首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Electron microscopic examinations of Glugea hertwigi and Spraguea lophii spores indicated the presence of a single plasma membrane; however, this membrane remained in the spore during the discharge of the sporoplasm from the spore. Although discharged spores retained the old plasma membrane, the extruded sporoplasms acquired a new plasma membrane. In order to determine where the new plasma membrane came from, we used two fluorescent probes with membrane affinities. The markers were tested on unfired and discharged spores. The probe, N-phenyl-1-naphthylamine (NPN), labeled the polaroplast membrane in addition to the apolar groups in the posterior vacuoles of unfired spores. After spore discharge, NPN label disappeared from the spore ghosts except for a slight fluorescence on residual plasma membranes. Much of the NPN-labeled membrane reappeared after spore discharge on the outer envelope of discharged sporoplasms. The probe chlorotetracycline (CTC) labeled calcium-associated membranes of spore polaroplasts. During spore discharge, the CTC fluorescence shifted from the polaroplast organelle of unfired spores to the outer envelope of discharged sporoplasms. These results indicate that the polaroplast organelle may provide the new plasma membrane for discharged microsporidian sporoplasms.  相似文献   

2.
3.
The life cycle of Culicospora magna (Kudo, 1920) Weiser, 1977, consists of two major developmental sequences that alternate in host individuals of successive generations, each of the sequences starting with a sporoplasm and ending with spores. The first sequence occurs in larval, pupal, and adult stages of a parental generation of the host mosquito, Culex restuans Theobald; it begins with a sporoplasm from an ingested uninucleate spore and progresses through stages in gametogony, plasmogamy, nuclear association, merogony, karyogamy, and disporous sporulation with production of binucleate spores that discharge sporoplasms into the oocytes. The second sequence occurs in egg and larval stages of a filial generation of the same host species; it begins with the binucleate sporoplasm that entered the egg, includes stages in merogony, nuclear dissociation, and mictosporous sporulation, and ends with uninucleate spores. These spores are released into the environment following death of the host and are capable of infecting new parental generation host individuals. The life cycle is conceived as an alternation of generations related to haploidy and diploidy in the nuclei, the transition from haploidy to diploidy occurring with nuclear association and the transition from diploidy to haploidy occurring with nuclear dissociation.  相似文献   

4.
Summary Isolated ectoderm of early gastrula stages ofTriturus alpestris was treated with vegetalizing factor for 24 h employing the sandwich method (induced ectoderm). Controls were incubated for the same period with -globulin which has no inducing activity. Explants of both series were labelled with cationized ferritin, which binds to negatively charged groups at physiological pH. In non-induced ectoderm, ferritin particles can be found as a thin layer all over the plasma membranes. In induced ectoderm the total amount of ferritin bound to the plasma membrane is much lower than in non-induced ectoderm. Ferritin is located in restricted areas only. In contrast to the controls, other membrane areas are free of ferritin particles. The correlation between these results and the change of cell affinity after induction with vegetalizing factor is discussed.  相似文献   

5.
This study provides evidence for the Golgi‐like activity of the multilayered interlaced network (MIN) and new ultrastructural observations of the MIN in the sporoplasm of Anncaliia algerae, a microsporidium that infects both insects and humans. The MIN is attached to the end of the polar tubule upon extrusion from the germinating spore. It surrounds the sporoplasm, immediately below its plasma membrane, and most likely maintains the integrity of the sporoplasm, as it is pulled through the everting polar tube. Furthermore, the MIN appears to deposit its dense contents on the surface of the sporoplasm within minutes of spore discharge thickening the plasma membrane. This thickening is characteristic of the developmental stages of the genus Anncaliia. The current study utilizes transmission electron microscopy (TEM), enzyme histochemistry, and high voltage TEM (HVEM) with 3D tomographic reconstruction to both visualize the structure of the MIN and demonstrate that the MIN is a Golgi‐related structure. The presence of developmentally regulated Golgi in the Microsporidia has been previously documented. The current study extends our understanding of the microsporidial Golgi and is consistent with the MIN being involved in the extracellular secretion in Anncaliia algerae. This report further illustrates the unique morphology of the MIN as illustrated by HVEM using 3D tomography.  相似文献   

6.
T. P. Liu 《Mycopathologia》1991,116(1):23-28
In Ascosphaera apis, after 8 days growth in darkness at 28° C, numerous sporocysts were observed, within which mature spores were seen aggregated into a spore ball. The mature spore of A. apis had a thick spore wall with an electron-opaque outer layer, a spore membrane with many depressions, and sporoplasm containing numerous ribosomes and mitochondria. In the cytoplasm of the mycelium, mitochondria with well-defined cristae and numerous ribosomes were observed. At a concentration of 1 g/ml of culture medium, benomyl appeared to inhibit colony growth of A. apis, but some sporocysts containing deformed spores were found. Deformed spores possessed a thick spore wall with a grainy matrix, and depressions were no longer detected in the spore membrane. Ribosomes were lacking in the sporoplasm and mitochondria appeared degenerate. The mycelium from the treated culture contained mitochondria with an electron-lucid matrix and no well defined cristae, while ribosomes were completely depleted. The significance of these observations in relation to the use of benomyl to control chalkbrood disease in the honey bee is discussed.  相似文献   

7.
A theory is presented which can explain the interaction of the major factors known to influence in vitro extrusion of the microsporidian polar filament. It is proposed that the pH, and concentration and species of cation in the external medium influence the activity of car?ylic ionophore molecules in spore membranes in the following manner: (1) Alkaline environmental conditions establish a proton gradient across the spore plasma membrane, and facilitate the activation of ionophore molecules in this membrane. (2) This proton gradient drives an ionophorically-mediated cation/proton exchange across the plasma membrane. (3) As protons are lost from the sporoplasm its alkalinity increases, so that ionophore molecules in organelle membranes (i.e. in the polaroplast and posterior vacuole) are activated. This initiates a cation/proton exchange between sporoplasm and organelles. (4) Continued movement of cations into organelles in the spore causes major osmotic imbalance across spore membranes. This leads to a rapid inflow of water into the spore and swelling of the polaroplast and posterior vacuole. The associated pressure increase in the spore causes the explosive discharge of the polar filament through the polar cap. This model is used to explain previously published results from the literature, and methods of testing predictions generated by this hypothesis are outlined.  相似文献   

8.
Toad spinal ganglion cells are individually enclosed in sheaths consisting of one or more attenuated layers of satellite cell cytoplasm surrounded externally by a basement membrane. Narrow (~150 A) extracellular channels separate these layers from one another and from the underlying neuron. In both in vivo and in vitro experiments it was found that molecules of ferritin, a water-soluble protein, are to some extent able to pass across the basement membrane and through these channels to reach the neuronal plasma membrane. Ferritin particles arriving at the neuronal surface are engulfed by the neuron in 0.1 to 0.2 µ "coated" vesicles. The concentration of ferritin in these vesicles is higher than in the perineuronal space. The ferritin incorporated into the neuron is segregated, apparently intact, in multivesicular bodies. It is inferred that the 150A channels in the satellite cell sheath are patent, aqueous spaces through which molecules with a diameter as large as 95 A are able to pass, and that these neurons are capable of taking up whole protein from their immediate environment by the process of pinocytosis.  相似文献   

9.
SYNOPSIS. The structure and cytochemistry of spores of Myxobolus sp. from plasmodia which occur in the gill filaments of the common shiner Notropis cornutus were studied by light microscopy and by scanning and transmission electron microscopy. The thin-walled valves of the pyriform spores are thickened in the lateral sutural and apical regions. Mucous material is associated predominantly with the posterior end of many spores. The plasmodium is surrounded by a syncytial wall bounded by 2 membranes. Pinocytotic channels are formed by the inner membrane and numerous dense vesicles are pinched off at the distal ends of the channels. Sporogenesis is initiated by the envelopment of one vegetative cell by another. The larger, enveloped cell divides to form a disporous pansporoblast, which contains 2 pairs of capsulogenic and valvogenic cells and 2 binucleate sporoplasm cells. Each capsular primordium and connecting external tubule gives rise to a polar capsule which houses a helically coiled polar tubule. The apical end of each polar capsule is plugged by a stopper. The valvogenic cells surround the capsulogenic and posteriorly situated sporoplasm cells to form the spore valves. Iodinophilic (glycogen) inclusions were not seen in spores stained with iodine or Best's carmine. A darkly stained band was observed around the posterior region of most spores stained with Best's carmine. In the electron microscope large aggregates of β glycogen particles were seen in the cytoplasm of sporoplasm cells in mature spores.  相似文献   

10.
Chicken erythrocytes were fused either by Sendai virus or by the combination of Ca2+ and ionophore A23187.Intramembrane particles and external anionic sites of cells undergoing fusion were found to acquire the ability to undergo a process of cold-induced clustering (thermotropic separation).Cationized ferritin (200 μg/ml 5% (v/v) cell suspension) inhibited both the fusion process and the thermotropic separation of intramembrane particles and external anionic sites. The correlation between the mobility of membrane proteins and the fusion process is discussed. It is suggested that an increase in the lateral mobility of membrane proteins is a prerequisite for initiation of membrane fusion.  相似文献   

11.
This study examines the relationship between phagosome acidification and phagosome-lysosome fusion events using phagocytized Glugea hertwigi spores. The incidence of lysosome fusion with Glugea spores in phagosomes of mouse peritoneal macrophages and of Tetrahymena was monitored using colloidal gold and acridine orange as labels for secondary lysosomes. Over 80% of the Glugea phagosomes remained segregated from the labeled compartments in macrophages after 60 min; this inhibition of fusion was still evident after 4 h. In Tetrahymena, Glugea spores also showed a high capacity to block fusion with secondary lysosomes (67%); however, spores coated with cationized ferritin showed an 80% fusion rate with labeled acidic compartments (i.e. lysosomes) after 60 min with both Tetrahymena and macrophages. The pH of phagosome compartments was monitored by measuring the emissions of fluorescein isothiocyanate (FITQ-labeled Glugea ingested by Tetrahymena. Tetrahymena phagosomes with FITC-Glugea did not acidify within the first hour after phagocytosis; however, phagosomes with cationized ferritin-labeled Glugea underwent acidification during this time period. This acidification took place although the capability of the host cells' lysosomes to fuse was blocked by pretreatment with poly-D-glutamic acid. The cationized ferritin bound to Glugea spores was uncoupled from the spore wall prior to fusion with colloidal gold-labeled compartments. In vitro testing showed that ferritin dissociation requires an acid pH, indicating that phagosomes acidify prior to lysosome fusion.  相似文献   

12.
Meira Weiss  Uri Pick 《Planta》1991,185(4):494-501
The fluorescent indicator atebrin (3-chloro-9-(4-diethylamino-1-methylbutyl)-7-methyoxy-acridine) is taken up by Dunaliella salina cells at alkaline external pH and accumulates in acidic vacuoles. The uptake is unaffected by light, by photosynthetic inhibitors, by protonophores or by ionophores; however, the dye can be released by amines, indicating that it is specifically accumulating in acidic vacuoles. Amines induce a biphasic enhancement of atebrin fluorescence — a fast phase, accompanied by redistribution within the cell, consistent with release of the dye from the vacuoles to the cytoplasm, and a slow phase, correlated with release of atebrin from the cells. These results are interpreted to indicate a slow equilibration of atebrin across the plasma membrane and a fast equilibration across the vacuolar membrane. Part of the dye cannot be released by the amines, and appears to be internally bound. Atebrin uptake is inhibited by cholesteryl hemisuccinate and is stimulated by lysophosphatidylcholine, indicating that modification of the lipid composition of the plasma membrane affects the permeability to atebrin. Analysis of the pH dependence of atebrin uptake indicates that the dye enters the cells by fluid-phase permeation. Different stresses enhance the rate of atebrin uptake and release, indicating that they modify plasma-membrane structure or composition. Atebrin may serve as a specific marker for acidic vacuoles, as an indicator for amine uptake, and as a probe for subtle changes in the permeability of the plasma membrane.Abbreviations Atebrin 3-chloro-9-(4-diethylamino-1-methylbutyl)-7-methoxy-acridine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - SF-6847 3,5-ditertbutyl-4-hydroxybenzylidenemalonitrile  相似文献   

13.
Penetration of triactinomyxon–sporoplasms of Myxobolus cerebralis through skin, fins, gills and buccal cavity have been demonstrated experimentally in rainbow trout. Furthermore the multiplication–stages of penetrated triactinomyxon–sporoplasms reach the cartilage via peripheral nerves and the central nervous system (CNS). This is in contrast to the assumption that the agent reaches the cartilage via blood, lymph, and/or coelomic fluid. During the first hour following penetration, the sporoplasm migrates between the epidermal cells. Then, it enters the epithelia and multiplies intracellularly. These stages migrate deeper into the subcutis, then through the peripheral nerves and CNS. After about 21 days the parasites reach the head cartilages. During their migration they also multiply to increase parasite numbers. The ultrastructure of the proliferative phase (presporogonic development) and the sporogonic phase of the life cycle are demonstrated and discussed.  相似文献   

14.
The ultrastructure of the storage parenchyma cells of the cotyledons of developing bean (Phaseolus vulgaris L.) seeds was examined in ultrathin frozen sections of specimens fixed in a mixture of glutaraldehyde, formaldehyde and acrolein, infused with 1 M sucrose, and sectioned at-80° C. Ultrastructural preservation was excellent and the various subcellular organelles could readily be identified in sections which had been stained with uranyl acetate and embedded in Carbowax and methylcellulose. The cells contained large protein bodies, numerous long endoplasmic reticulum cisternae, mitochondria, dictyosomes, and electron-dense vesicles ranging in size from 0.2 to 1.0 m. Indirect immunolabelling using rabbit immunoglobulin G against purified phaseolin (7S reserve protein), and ferritin-conjugated goat immunoglobulin G against rabbit immunoglobulin G was used to localize phaseolin. With a concentration of 0.1 mg/ml of anti-phaseolin immunoglobin G, heavy labeling with ferritin particles was observed ober the protein bodies, the cisternae of the endoplasmic reticulum, and the vesicles. The same structures were lightly labeled when the concentration of the primary antigen was 0.02 mg/ml. Ferritin particles were also found over the Golgi bodies. The absence of ferritin particles from other organelles such as mitochondria and from areas of cytoplasm devoid of organelles indicated the specificity of the staining, especially at the lower concentration of anti-phaseolin immunoglobulin G.Abbreviations ER endoplasmic reticulum - IgG immunoglobulin G  相似文献   

15.
G. Thiel 《Protoplasma》1994,179(1-2):26-33
Summary The present paper describes the construction and properties of a Pt/Ir-semi-microelectrode and its application as a redoxsensitive electrode in intact cells of the giant algaNitella. For compartmental analysis of the stationary redox-state voltage (ERED), a value reflecting the interaction of the dominant redox couples with a Pt/Ir-electrode, the redox-sensitive electrode was inserted into the vacuole of leaf cells or cytoplasm enriched fragments (CEF) fromNitella internodal cells. After correction for the membrane voltage, measured with a second, conventional voltage electrode, ERED values of+237±93mVand+419±51 mV with respect to a normal H+-electrode were obtained for cytoplasm and vacuole, respectively. The redox-state of the cell culture medium was+604 mV. The steady state ERED in the cytoplasm can be perturbed by experimental treatments: indirect acidification of the cytoplasm by an external pH jump from 7.5 to 5.8 and direct acidification, by acid loading with 5 mM butyrate, both resulted in a positive shift of ERED, i.e., to an increase in cytoplasmic oxidation. At the same time the membrane depolarized electrically following the external pH jump, but hyperpolarized in response to acid loading. The data demonstrate the direct dependence of cytoplasmic redox state on intracellular pH, probably due to enhanced oxidation of protonated redox couples favoured by mass action. The electrical membrane voltage changes were not correlated with the shift in cytoplasmic ERED. This demonstrated that redox energy does not determine the electrical membrane voltage. Cytoplasmic ERED was also affected by photosynthesis. When CEFs were transferred from light to dark, or exposed to 10M 3-(3,4-dichlorophenyl)-1,l-dimethylurea (DCMU), ERED shifted negatively (more reduced) by 6.4±4.5mV or 4.2±2mV, respectively. These data compare favourably with biochemical estimates of cytoplasmic pyridin nucleotides which also show an increase in cytoplasmic reduction in the dark. Therefore, it is unlikely that diffusable reducing equivalents are supplied to the cytoplasm from photosynthetically-active chloroplasts to act as secondary messengers.Abbreviations EM transmembrane voltage - ERED redox-state voltage - E0 midpoint-redox-voltage - APW artificial pond water - CEF cytoplasm enriched fragment  相似文献   

16.
Correlative light and electron microscopic observations were used to reconstruct the morphological events involved in the development of the discharge apparatus of Entophlyctis zoosporangia. A discharge plug formed as vesicles containing fibrillar material fused with the plasma membrane and deposited their matrices between the plasma membrane and zoosporangial wall. At the apex of the enlarging plug, the zoosporangial wall lost its microfibrillar appearance, became diffuse, and left an inoperculate discharge pore. The discharge plug exuded through this pore and then expanded into a sphere which rested at the tip of the discharge papilla or tube. After the release of the discharge plug, the number of fibrilla containing vesicles decreased and abundant endoplasmic reticulum appeared in the cytoplasm below the plug. Granular material then accumulated at the interface of the discharge plug and the plasma membrane. This was the endo-operculum. A single layer of endoplasmic reticulum subtended the area of plasma membrane which the endo-operculum covered. Later, dictyosomes appeared in the cytoplasm below the endo-operculum. Fusion of Golgi vesicles with the plasma membrane below the endo-operculum coincided with the initiation of cytoplasmic cleavage. This sequence of events indicates that, unlike the discharge plug, the endo-operculum does not originate by vesicular addition of preformed material.  相似文献   

17.
Summary Individuals of the plant-parasitic nematodeCriconemella xenoplax, monoxenically cultured on root expiants of clover, carnation, and tomato, fed continuously for up to 8 days from single cells in the outer root cortex. Individual cortical cells parasitized by nematodes were modified into discrete food cells in all hosts examined. The nematode's stylet penetrated between epidermal cells and frequently through a subepidermal cortical cell. Electron-transparent callose-like material continuous with the cell wall enveloped the portion of the stylet that traversed subepidermal cortical cells. Food cells were typically located in the first or second cell layers of the cortex. The stylet penetrated 5–6 m through the wall of the food cell without penetrating the plasma membrane. Electron-transparent callose-like deposits formed between the invaginated plasma membrane and stylet, except at its aperture. The plasma membrane of the food cell was appressed tightly to the wall of the stylet aperture creating a 130–160 nm hole in the membrane. This opening provided continuity between the lumen of the stylet and the food cell cytosol for ingestion of nutrients by the nematode. Ribosomes were dissociated from the cisternae of the endoplasmic reticulum in food cells and accumulated with other cell organelles in a zone of modified cytoplasm around the stylet. A fibrillar material appeared to form a barrier in the cytosol around the stylet aperture that limited movement of cell organelles toward the aperture. Electron-dense secretory components were secreted into the food cell by the nematode. Clusters of putative nematode secretory components consisting of 20–40 nm diameter, electron-dense particles were dispersed in the densely particulate zone of cytoplasm around the stylet tip. The cytosol immediately around the stylet aperture in the center of the modified cytoplasm was finely granular.Plasmodesmata connecting the cytoplasm of the food cell with the cytoplasm of neighboring cells were greatly modified in a way that could facilitate solute transport into the food cell. The plasma membrane-lined canals of the modified plasmodesmata appeared to be increased in diameter and lacked desmotubules. Additionally, they frequently were lengthened by electron-transparent callose-like deposits projecting from the wall into the cytoplasm of the food cell. An electron-dense cap that formed an apparent tight seal with the plasma membrane developed over the entrance of each modified plasmodesma in the neighboring cells. These caps excluded all cell organelles from the cytosol contained within them. The nucleus of the food cell was usually enlarged and atypically shaped with dense peripheral clumps of condensed chromatin. Our results show thatC. xenoplax induces elaborate cellular modifications in host tissue to support sustained ingestion of nutrients from a single food cell.  相似文献   

18.
The external and cytoplasmic surfaces of the sea urchin egg at fertilization have been examined with the scanning electron microscope (SEM). The outside events were documented by glueing eggs to polylysine coated glass plates, adding sperm and fixing rapidly. To reveal the inner aspects of the surface as the sperm travels through it to reach the egg cytoplasm, the fertilized egg surface was isolated in 0.3 M KC1, 0.35 M glycine, 2 mM MgCl2, 2 mM EGTA, pH 7.5, glued onto a polylysine-coated plate and processed for the SEM. The events of spermatozoon attachment, membrane fusion, sperm entry, rotation and detachment into the egg cytoplasm as well as the associated cortical changes are described. The egg cortex is revealed to be a uniform network of fibrous bundles.The spermatozoon initially attaches to the egg surface by the acrosomal filament. As membrane fusion occurs between the gametes, the plasma membrane of the egg engulfs the sperm, the cortical granules start to discharge and a spreading surface deformation, possibly caused by a cortical contraction, is initiated. The perpendicularly entering spermatozoon is surrounded by a cluster of elongate microvilli which appear to have 235 nm vesicles associated with their bases. The sperm is prevented by the cortex from directly entering the egg cytoplasm and lies upon the egg surface between the plasma membrane and the matrix of cortical fibers. It is subsequently rotated additionally to enter the egg cytoplasm with the posterior end first. A scar is left in the cortex where the spermatozoon penetrated. The egg cortex is shown to consist of 50–200 nm uniformly arranged fibers, and its thickness ranges from 0.2 to 0.5 μm. It is speculated that this structure may be contractile.  相似文献   

19.
The microsporidian spore extrusion apparatus activates with a calcium influx from Spraguea lophii spore wall/plasma membrane; this influx requires preconditioning with an extrasporular shift in medium pH to the alkaline in the presence of the polyanions mucin or polyglutamate. Undischarged S. lophii spores display calcium bound to the wall/plasma membrane with a characteristic calcium-chlorotetracycline fluorescence; this fluorescence declines significantly during spore discharge. S. lophii spores do not discharge when spore wall/plasma membrane calcium is removed with EGTA. Extrasporular mucin or polyglutamate and a pH shift to the alkaline appear to be necessary preconditions for the triggering of the influx of spore wall/plasma membrane-bound 45Ca2+. Ionophore A-23187 also effectively activates spore discharge without other extrasporular polyanions. Micromolar concentrations of the calcium antagonists lanthanum or verapamil prevent spore discharge, and micromolar concentrations of calmodulin inhibitors chlorpromazine and trifluroperazine prevent spore discharge. Calmodulin, visualized with a calmodulin antibody and a peroxidase conjugate, is localized particularly on the plasma membrane and the polaroplast membranes of the extrusion apparatus.  相似文献   

20.
Felle HH 《Plant physiology》1994,106(3):1131-1136
In root-hair cells of Sinapis alba, cytosolic pH, cytosolic [Cl-], membrane potential, and membrane resistance have been measured to investigate proton-driven Cl- transport across the plasma membrane. Rapid lowering of the external pH transiently increased cytosolic [Cl-] and acidified the cytoplasm. To an abrupt increase in external [Cl-] the cells reacted with a rapid initial depolarization and a subsequent slower hyperpolarization, which was accompanied by an increase in cytosolic [Cl-] and [H+]. These results are indicative of an nH+/Cl- symport with n > 1. Simultaneous recording of the membrane potential, the proton motive force, cytosolic pH, and cytosolic [Cl-] reveals that kinetically this Cl- transport depends on the pH gradient across the plasma membrane rather than on the membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号