首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
. Quantitative real-time PCR (qRT-PCR) was adapted to estimate transgene copy number in transgenic maize callus and plants. WHISKERS™-derived transgenic callus lines and plants were generated using two different gene constructs. These transgenic materials represented a range of copy number. A 'standard curve' was established by mixing plasmid DNA with non-transgenic genomic maize DNA using a calculated ratio of target gene to host genome size. 'Estimated' copy number in the callus lines and plants using qRT-PCR was correlated with the 'actual' copy number based on Southern blot analysis. The results indicated that there was a significant correlation between the two methods with both gene constructs. Thus, qRT-PCR represents an efficient means of estimating copy number in transgenic maize.  相似文献   

2.
Identifying the genetic variation underlying complex disease requires analysis of many single nucleotide polymorphisms (SNPs) in a large number of samples. Several high-throughput SNP genotyping techniques are available; however, their cost promotes the use of association screening with pooled DNA. This protocol describes the estimation of SNP allele frequencies in pools of DNA using the quantitative sequencing method Pyrosequencing (PSQ). PSQ is a relatively recently described high-throughput method for genotyping, allele frequency estimation and DNA methylation analysis based on the detection of real-time pyrophosphate release during synthesis of the complementary strand to a PCR product. The protocol involves the following steps: (i) quantity and quality assessment of individual DNA samples; (ii) DNA pooling, which may be undertaken at the pre- or post-PCR stage; (iii) PCR amplification of PSQ template containing the variable sequence region of interest; and (iv) PSQ to determine the frequency of alleles at a particular SNP site. Once the quantity and quality of individual DNA samples has been assessed, the protocol usually requires a few days for setting up pre-PCR pools, depending on sample number. After PCR amplification, preparation and analysis of PCR amplicon by PSQ takes 1 h per plate.  相似文献   

3.
Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2‐kb genomic units each containing four genes. Reliable, high‐throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single‐tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN‐resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker‐assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars.  相似文献   

4.
Using real-time PCR to determine transgene copy number in wheat   总被引:1,自引:0,他引:1  
Transgene copy number is usually determined by means of Southern blot analysis which can be time consuming and laborious. In this study, quantitative real-time PCR was developed to determine transgene copy number in transgenic wheat. A conserved wheat housekeeping gene,puroindoline-b, was used as an internal control to calculate transgene copy number. Estimated copy number in transgenic lines using real-time quantitative PCR was correlated with actual copy number based on Southern blot analysis. Real-time PCR can analyze hundreds of samples in a day, making it an efficient method for estimating copy number in transgenic wheat.  相似文献   

5.
Genomic rearrangements leading to deletion or duplication of gene(s) resulting in alterations in gene copy number underlie the molecular lesion in several genetic disorders. Methods currently used to determine gene copy number including real time PCR, southern hybridization, fluorescence in situ hybridization, densitometric scanning of PCR product etc. have certain disadvantages and are also expensive and time consuming. Herein, we describe a simple and rapid method to assess gene copy number using denaturing high performance liquid chromatography (dHPLC). We used X chromosome genes as model to compare the gene copy numbers present on this chromosome in males and females. DNA from these samples were amplified by biplex PCR using primer pairs specific for X chromosome genes only (target gene) and for genes present on both X and Y chromosomes (internal control). Amplified products were analyzed using HPLC under non-denaturing conditions. The ratio of peak areas (target gene/internal control) of the amplified products was approximately twice in female samples than male samples (p < 0.001) demonstrating that the differential gene copy number can be easily detected using this method. This method can potentially be used for diagnostic purpose where the need is to distinguish samples based on the differential gene copy numbers.  相似文献   

6.
Exome sequencing constitutes an important technology for the study of human hereditary diseases and cancer. However, the ability of this approach to identify copy number alterations in primary tumor samples has not been fully addressed. Here we show that somatic copy number alterations can be reliably estimated using exome sequencing data through a strategy that we have termed exome2cnv. Using data from 86 paired normal and primary tumor samples, we identified losses and gains of complete chromosomes or large genomic regions, as well as smaller regions affecting a minimum of one gene. Comparison with high-resolution comparative genomic hybridization (CGH) arrays revealed a high sensitivity and a low number of false positives in the copy number estimation between both approaches. We explore the main factors affecting sensitivity and false positives with real data, and provide a side by side comparison with CGH arrays. Together, these results underscore the utility of exome sequencing to study cancer samples by allowing not only the identification of substitutions and indels, but also the accurate estimation of copy number alterations.  相似文献   

7.
Here we demonstrate a method for unbiased multiplexed deep sequencing of RNA and DNA libraries using a novel, efficient and adaptable barcoding strategy called Post Amplification Ligation-Mediated (PALM). PALM barcoding is performed as the very last step of library preparation, eliminating a potential barcode-induced bias and allowing the flexibility to synthesize as many barcodes as needed. We sequenced PALM barcoded micro RNA (miRNA) and DNA reference samples and evaluated the quantitative barcode-induced bias in comparison to the same reference samples prepared using the Illumina TruSeq barcoding strategy. The Illumina TruSeq small RNA strategy introduces the barcode during the PCR step using differentially barcoded primers, while the TruSeq DNA strategy introduces the barcode before the PCR step by ligation of differentially barcoded adaptors. Results show virtually no bias between the differentially barcoded miRNA and DNA samples, both for the PALM and the TruSeq sample preparation methods. We also multiplexed miRNA reference samples using a pre-PCR barcode ligation. This barcoding strategy results in significant bias.  相似文献   

8.
Park JW  Crowley DE 《BioTechniques》2005,38(4):579-586
The analysis of microbial communities in environmental samples requires accurate and reproducible methods for extraction of DNA from sample matrices that have different physical and chemical characteristics. Even with the same sample type, variations in laboratory methods can result in different DNA yields. To circumvent this problem, we have developed an easy and inexpensive way to normalize the quantities of DNA that involves the addition of an internal standard prepared from plasmid DNA. The method was evaluated by comparing DNA yields using different DNA extraction procedures, after which the DNA was used for microbial community analysis by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S ribosomal RNA (rRNA) and for quantification of 16S rRNA gene copy numbers in environmental samples by real-time PCR. Our results show that use of the internal standard allows normalization of the resulting data and more accurate quantification of gene copy numbers in soil samples. These methods should also have broad application for various other types of environmental samples.  相似文献   

9.
The pfmdr1 gene, which encodes P-glycoprotein homolog 1, has been shown to be a reliable marker of resistance for Plasmodium falciparum related to artesunate and mefloquine combination therapy. The aims of this study are to investigate the copy number of pfmdr1 in P. falciparum isolates collected from the 4 malaria-endemic areas of Thailand (Kanchanaburi, Mae Hongson, Ranong, and Tak) along the Thailand-Myanmar (Burma) border (Thai-Myanmar border) by using SYBR Green I and the standard method TaqMan real-time polymerase chain reaction (RT-PCR) and to compare the efficiency (sensitivity and specificity) of SYBR Green I with TaqMan RT-quantitative (q)PCR methods in determining pfmdr1 gene copy number. Ninety-six blood samples were collected onto filter paper from patients with uncomplicated falciparum malaria who attended malaria clinics in the Kanchanaburi (n = 45), Mae Hongson (n = 18), Ranong (n = 11), and Tak (n = 22) provinces in Thailand. Parasite genomic DNA was extracted from dried blood spots by using QIAcube? automated sample preparation. Pfmdr1 gene copy number was determined by TaqMan (63 samples) and SYBR Green I (96 samples) real-time PCR. Seventy-one (74.0%), 14 (14.6%), 10 (10.4%), and 1 (1%) isolates carried 1, 2, 3, and 4 pfmdr1 gene copies, respectively. Forty-three of 48 (89.6%), 6 of 11 (54.5%), and 3 of 4 (75.0%) samples, respectively, showed agreement with results of 1, 2, and 3 pfmdr1 gene copies as determined by both methods. The efficiency of SYBR Green I in identifying pfmdr1 gene copy number was found to be significantly correlated with that of TaqMan. Considering its simplicity and relatively low cost, SYBR Green I RT-qPCR is therefore a promising alternative technique for the determination of pfmdr1 copy number.  相似文献   

10.
利用SNP数据检测肿瘤细胞染色体拷贝数变异是癌症相关研究的一个热点,目前已有多种方法可以通过分析SNP array数据检测染色体拷贝数。然而在某些情况下,这些检测方法检测结果与真实拷贝数具有一定错误率。目前并没有方法研究预测结果发生错误的规律。本文分别分析了GPHMM,ASCAT两种检测方法结果信息熵与检测正确率的关系,发现检测正确率与信息熵存在很强的相关性。通过对比不同肿瘤细胞比例下信息熵与正确率关系,本文发现随着肿瘤细胞比例的增大,检测结果信息熵平均值增大,方差减小;同时平均检测正确率也越来越大,方差显著减小。这些结果显示信息熵的大小可以反映出检测结果正确率的高低。最后,本文以高肿瘤细胞比例下拷贝数检测结果为例,研究了在变异类型单一,信息熵小的情况下,染色体倍性检测的正确率。结果表明信息熵可以作为衡量检测结果可信度的指标:即信息熵越高,检测结果越可信。  相似文献   

11.
For rough quantitative analysis of genetically modified maize contents, rapid methods for measurement of the copy numbers of the cauliflower mosaic virus 35S promoter region (P35S) and MON810 construct-specific gene (MON810) using a combination of a capillary-type real-time PCR system with a plasmid DNA were established. To reduce the characteristic differences between the plasmid DNA and genomic DNA, we showed that pretreatment of the extracted genomic DNA by a combination of sonication and restriction endonuclease digestion before measurement is effective. The accuracy and reproducibility of this method for MON810 content (%) at a level of 5.0% MON810 mixed samples were within a range from 4.26 to 5.11% in the P35S copy number quantification. These methods should prove to be a useful tool to roughly quantify GM maize content.  相似文献   

12.
13.
In the standard plant transformation practice, transgene copy number is often inversely correlated with transgene expression. As the integration locus generated by standard methods is mostly complex, consisting of both full-length and partial copies arranged in direct or inverted repeat configurations, it is difficult to parse the effect of copy number and locus structure. To clearly study the effect of transgene copy number on gene expression, it is important to control the locus structure and integrate full-length copies. In this study, the effect of transgene copy number on transgene expression in plant cells was determined using rice callus as a model. To generate full-length integrations, Cre-lox-mediated site-specific gene integration method was used. Transgenic rice lines consisting of one to three copies of β-glucuronidase or green fluorescent protein genes were developed. Site-specific integration lines were characterized and subjected to expression analysis. Lines containing two or three copies of either reporter genes displayed 2–4 times higher expression compared to the single-copy lines. Therefore, dosage-dependent transgene expression can be obtained by integrating full-length copies, and site-specific gene integration approach can serve as an efficient tool for generating precise multi-copy integrations.  相似文献   

14.
Summary In the progeny of an active Mutator plant, the number of Mu elements increases on self-pollination and maintains the average parental Mu content on outcrossing to a non-Mutator line; both patterns of transmission require an increase in the absolute number of Mu elements from one generation to the next. The same average copy number of Mu elements is transmitted through the male and female, but there is wide variation in the absolute copy number among the progeny. In inactive Mutator plants —defined both by the loss of somatic instability at a reporter gene (bronze2-mu1) and by modification of the HinfI sites in the terminal inverted repeat sequences of Mu elements —the absolute copy number of Mu elements is fixed in the parent. Thus, in outcrosses Mu element number is halved, and on self-pollination Mu copy number is constant. Reactivation of somatic mutability at cryptic bz2-mu1 alleles in inactive individuals by crossing to an active line seems not to involve an increase in Mu element copy number transmitted by the inactive individual. These and other results suggest that increases in Mu copy number occur late in plant development or in the gametophyte rather than after fertilization.  相似文献   

15.
Copy number variations (CNVs) in the human genome are conventionally detected using high-throughput scanning technologies, such as comparative genomic hybridization and high-density single nucleotide polymorphism (SNP) microarrays, or relatively low-throughput techniques, such as quantitative polymerase chain reaction (PCR). All these approaches are limited in resolution and can at best distinguish a twofold (or 50%) difference in copy number. We have developed a new technology to study copy numbers using a platform known as the digital array, a nanofluidic biochip capable of accurately quantitating genes of interest in DNA samples. We have evaluated the digital array's performance using a model system, to show that this technology is exquisitely sensitive, capable of differentiating as little as a 15% difference in gene copy number (or between 6 and 7 copies of a target gene). We have also analyzed commercial DNA samples for their CYP2D6 copy numbers and confirmed that our results were consistent with those obtained independently using conventional techniques. In a screening experiment with breast cancer and normal DNA samples, the ERBB2 gene was found to be amplified in about 35% of breast cancer samples. The use of the digital array enables accurate measurement of gene copy numbers and is of significant value in CNV studies.  相似文献   

16.
Gene set analysis methods are popular tools for identifying differentially expressed gene sets in microarray data. Most existing methods use a permutation test to assess significance for each gene set. The permutation test's assumption of exchangeable samples is often not satisfied for time‐series data and complex experimental designs, and in addition it requires a certain number of samples to compute p‐values accurately. The method presented here uses a rotation test rather than a permutation test to assess significance. The rotation test can compute accurate p‐values also for very small sample sizes. The method can handle complex designs and is particularly suited for longitudinal microarray data where the samples may have complex correlation structures. Dependencies between genes, modeled with the use of gene networks, are incorporated in the estimation of correlations between samples. In addition, the method can test for both gene sets that are differentially expressed and gene sets that show strong time trends. We show on simulated longitudinal data that the ability to identify important gene sets may be improved by taking the correlation structure between samples into account. Applied to real data, the method identifies both gene sets with constant expression and gene sets with strong time trends.  相似文献   

17.
High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch‐rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed‐dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus.  相似文献   

18.
We present a model of gene duplication by means of unequal crossover (UCO) where the probability of any given pairing between homologous sequences scales as a penalty factor p z ≤ 1, with z the number of mismatches due to asymmetric sequence alignment. From this general representation, we derive several limiting case models of UCO, some of which have been treated elsewhere in the literature. One limiting case is random unequal crossover (RUCO), obtained by setting p = 1 (corresponding to equiprobable pairings at each site). Another limiting case scenario (the ‘Krueger-Vogel’ model) proposes an optimal ‘endpoint’ alignment which strongly penalizes both overhang and deviations from endpoint matching positions. For both of these scenarios, we make use of the symmetry properties of the transition operator (together with the more general UCO properties of copy number conservation and equal parent-offspring mean copy number) to derive the stationary distribution of gene copy number generated by UCO. For RUCO, the stationary distribution of genotypes is shown to be a negative binomial, or alternatively, a convolution of geometric distributions on ‘haplotype’ frequencies. A different type of model derived from the general representation only allows recombination without overhang (internal UCO or IntUCO). This process has the special property of converging to a single copy length or a distribution on a pair of copy lengths in the absence of any other evolutionary forces. For UCO systems in general, we also show that selection can readily act on gene copy number in all of the UCO systems we investigate due to the perfect heritability (h 2 = 1) imposed by conservation of copy number. Finally, some preliminary work is presented which suggests that the more general models based on misalignment probabilities seem to also converge to stationary distributions, which are most likely functions of parameter value p. An erratum to this article is available at .  相似文献   

19.
Two PCR methods using internal standards, coupled with our sandwich nonisotopic enzyme-linked oligosorbent assay (ELOSA) in microtiter plate format, were developed for quantitation of human immunodeficiency virus type 1 (HIV-1) provirus. We present an overview of both methodologies focusing on two major features, i.e., the conditions of equivalency of replication efficiency and the definition of criteria of acceptance validating a result. Quantitative competitive PCR (QC-PCR) was based on the coamplification of the HIV-1 nef gene with different amounts of a pNEFmut plasmid that contains the nef gene with different amounts of a pNEFmut plasmid that contains the nef region but with mutations in the capture probe recognition region. The NEF wild-type (NEF) and the NEF mimic (NEFmut) amplification products were differentiated in ELOSA. NEFmut OD to NEF OD ratios were plotted against the number of mimic copies, and the deduced linear curve permitted quantitation of HIV-I copy number. Internally controlled PCR (IC-PCR) was based on coamplification of the HIV-1 nef gene with an internal endogenous standard, the ras gene, as a positive control of amplification. HIV-1 copy number was determined using external standard of known amounts of HIV-1 DNA. We address the advantages as well as the limitations of individuals protocols and discuss future improvements of quantitative amplification process.  相似文献   

20.
The RB7 matrix attachment region (MAR), when flanking a uidA (GUS) reporter gene, has been previously shown to increase uidA gene expression by 60-fold in stably transformed tobacco suspension cell lines. We have now used the same co-transformation procedure to determine the effect of flanking MARs on uidA gene expression in tobacco plants. The neomycin phosphotransferase selection gene and uidA reporter gene on separate plasmids were co-transformed into seedlings by microprojectile bombardment. In primary transgenic plants, the average uidA expression in plants with MARs was twofold greater than in control plants without MARs, but there was no effect on variation of expression. GUS activity was not proportional to the number of integrated uidA transgenes over the entire range of copy numbers. However, in the lower part of the copy number range, MAR lines show a tendency for expression to increase with copy number. Transgene expression in backcross progenies of the MAR-containing lines averaged threefold higher than in control progenies. MARs also reduced the loss of transgene expression in the BC1 generation. Sixty-three per cent of the 21 MAR-containing primary transformants, but only 20% of the 14 control primary transformants, produced backcross progenies in which no loss of transgene expression was observed. These observations are discussed in the context of homology-dependent gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号