首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
A direct mass spectrometric approach was used for the determination of steady-state kinetic parameters, the turnover number (k(cat)), the Michaelis constant (K(M)), and the specificity constant (k(cat)/K(M)) for an enzyme-catalyzed hydrolysis of xylooligosaccharides. Electrospray ionization mass spectrometry was performed to observe product distributions and to determine k(cat), K(M), and k(cat)/K(M) values for Trichoderma reesei endo-1,4-beta-xylanase II (TRX II) with xylohexaose (Xyl(6)), xylopentaose (Xyl(5)), xylotetraose (Xyl(4)), and xylotriose (Xyl(3)) as substrates. The determined k(cat)/K(M) values (0.93, 0.37, 0.027, and 0.00015 microM(-1) s(-1), respectively) indicated that Xyl(6) was the most preferred substrate of TRX II. In addition, the obtained K(M) value for Xyl(5) (136 microM) was roughly twice as high as that for Xyl(6) (73 microM), suggesting that at least six putative subsites contribute to the substrate binding in the active site of TRX II. Previous mass spectrometric assays for enzyme kinetics have been used mostly in the case of reactions that result in a transfer of acidic groups (e.g., phosphate) into neutral oligosaccharides giving rise to negatively charged products. Here we demonstrate that such analysis is also feasible in the case of neutral underivatized oligosaccharides. Implications of the results for the catalytic mechanism of TRX II in particular are discussed.  相似文献   

2.
The human 6-O-endosulfatases HSulf-1 and -2 catalyze the region-selective hydrolysis of the 6-O-sulfate group of the glucosamine residues within sulfated domains of heparan sulfate, thereby ensuring a unique and original post-biosynthetic modification of the cell surface proteoglycans. While numerous studies point out the role of HSulf-2 in crucial physiological processes as well as in pathological conditions particularly in cancer, its structural organization in two chains and its functional properties remain poorly understood. In this study, we report the first characterization by mass spectrometry (MS) of HSulf-2. An average molecular weight of 133,115 Da was determined for the whole enzyme by MALDI-TOF MS, i.e. higher than the naked amino acid backbone (98,170 Da), highlighting a significant contribution of post-translational modifications. The HSulf-2 protein sequence was determined by Nano-LC-MS/MS, leading to 63% coverage and indicating at least four N-glycosylation sites at Asn 108, 147, 174 and 217. These results provide a platform for further structural investigations of the HSulf enzymes, aiming at deciphering the role of each chain in the substrate binding and specificities and in the catalytic activities.  相似文献   

3.
Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150–600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes.  相似文献   

4.
Since its introduction mass spectrometry imaging (MSI) has proven to be a powerful tool for the localization of molecules in biological tissues. In drug discovery and development, understanding the distribution of both drug and its metabolites is of critical importance. Traditional methods suffer from a lack of spatial information (tissue extraction followed by LCMS) or lack of specificity resulting in the inability to resolve parent drug from its metabolites (whole body autoradiography). MSI is a sensitive and label-free approach for imaging drugs and metabolites in tissues. In this article we review the different MSI technologies that have been applied to the imaging of pharmaceuticals. Recent technical advances, applications and current analytical limitations are discussed.  相似文献   

5.
The tyrosine kinase Kit, a receptor for Stem Cell Factor, is involved, among others, in processes associated to cell survival, proliferation and migration. Upon physiological conditions, the activity of Kit is tightly regulated. However, primary mutations that lead to its constitutive activation are the causal oncogenic driver of gastrointestinal stromal tumours (GISTs). GISTs are known to be refractory to conventional therapies but the introduction of Imatinib, a selective inhibitor of tyrosine kinases Abl and Kit, significantly ameliorated the treatment options of GISTs patients. However, the acquisition of secondary mutations renders Kit resistant towards all available drugs. Mutation involving gatekeeper residues (such as V654a and T670I) influence both the structure and the catalytic activity of the enzyme. Therefore, detailed knowledge of the enzymatic properties of the mutant forms, in comparison with the wild type enzyme, is an important pre-requisite for the rational development of specific inhibitors. In this paper we report a thorough kinetic analysis of the reaction catalyzed by the Kit kinase and its gatekeeper mutated form T670I. Our results revealed the different mechanisms of action of these two enzymes and may open a new avenue for the future design of specific Kit inhibitors.  相似文献   

6.
Methylglyoxal was demonstrated to be a substrate for the isozymes E1, E2 and E3 of human aldehyde dehydrogenase. Pyruvate was the product from the oxidation of methylglyoxal by the three isozymes. At pH 7.4 and 25oC, the major and minor components of the E3 isozyme catalyzed the reaction with Vmax of 1.1 and 0.8 μmol NADH min−1 mg−1 protein, respectively, compared to 0.067 and 0.060 μmol NADH min−1 mg−1 protein for the E1 and E2 isozymes, respectively. The E2 isozyme had a Km for methylglyoxal of 8.6 μM, the lowest compared to 46 μM for E1 and 586 and 552 μM for the major and minor components of the E3 isozyme, respectively. Both components of the E3 isozyme showed substrate inhibition by methylglyoxal, with Ki values of 2.0 mM for the major component and 12 mM for the minor component at pH 9.0. Substrate inhibition by methylglyoxal was not observed with the E1 and E2 isozymes. Methylglyoxal strongly inhibited the glycolaldehyde activity of the E1 and E2 isozymes. Mixed-type models of inhibition were employed as an approach to calculate the inhibition constants, 44 and 10.6 μM for E1 and E2 isozymes, respectively.  相似文献   

7.
The role that heparanase plays during metastasis and angiogenesis in tumors makes it an attractive target for cancer therapeutics. Despite this enzyme’s significance, most of the assays developed to measure its activity are complex. Moreover, they usually rely on labeling variable preparations of the natural substrate heparan sulfate, making comparisons across studies precarious. To overcome these problems, we have developed a convenient assay based on the cleavage of the synthetic heparin oligosaccharide fondaparinux. The assay measures the appearance of the disaccharide product of heparanase-catalyzed fondaparinux cleavage colorimetrically using the tetrazolium salt WST-1. Because this assay has a homogeneous substrate with a single point of cleavage, the kinetics of the enzyme can be reliably characterized, giving a Km of 46 μM and a kcat of 3.5 s−1 with fondaparinux as substrate. The inhibition of heparanase by the published inhibitor, PI-88, was also studied, and a Ki of 7.9 nM was determined. The simplicity and robustness of this method, should, not only greatly assist routine assay of heparanase activity but also could be adapted for high-throughput screening of compound libraries, with the data generated being directly comparable across studies.  相似文献   

8.
Each biocatalyst screen is unique, defined by the combination of factors involved in the screen, including the number and type of biocatalysts in the screening collection, substrate chemistry and the type of assay. Advances in the technology surrounding mass spectrometry — in software, in ionization sources and interfaces and in engineering, which allows smaller mass spectrometry systems and narrow bore HPLC — have made the application of this versatile technology in screening assays possible. A mass spectrometric assay provides sensitive, specific, quantitative, high-throughput detection of new biocatalyst activities. Examples of these applications are presented and potential pitfalls are discussed.  相似文献   

9.
We describe nutritional peptidomics for discovery and validation of bioactive food peptide and their health effects. Understanding nature and bioactivity of nutritional peptides means comprehending an important level of environmental regulation of the human genome, because diet is the environmental factor with the most profound life-long influence on health. We approach the theme from three angles, namely the analysis, the discovery and the biology perspective. Food peptides derive from parent food proteins via in vitro hydrolysis (processing) or in vivo digestion by various unspecific and specific proteases, as opposed to the tryptic peptides typically generated in biomarker proteomics. A food bioactive peptide may be rare or unique in terms of sequence and modification, and many food genomes are less well annotated than e.g. the human genome. Bioactive peptides can be discovered either empirically or by prediction: we explain both the classical hydrolysis strategy and the bioinformatics-driven reversed genome engineering. In order to exert bioactivity, food peptides must be either ingested and then reach the intestine in their intact form or be liberated in situ from their parent proteins to act locally, that is in the gut, or even systemically, i.e. through the blood stream. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

10.
The acyl composition of sphingolipids is determined by the specificity of the enzyme ceramide synthase (EC 2.3.1.24). Ceramide contains a long-chain base (LCB) linked to a variety of fatty acids to produce a lipid class with potentially hundreds of structural variants. An optimized procedure for the assay of ceramide synthase in yeast microsomes is reported that uses mass spectrometry to detect any possible LCB and fatty acid combination synthesized from unlabeled substrates provided in the reaction. The assay requires the delivery of substrates with bovine serum albumin for maximum activity within defined limits of substrate concentration and specific methods to stop the reaction and extract the lipid that avoid the non-enzymatic synthesis of ceramide. The activity of ceramide synthase in yeast microsomes is demonstrated with the four natural LCBs found in yeast along with six saturated and two unsaturated fatty acyl-coenzyme As from 16 to 26 carbons in length. The procedure allows for the determination of substrate specificity and kinetic parameters toward natural substrates for ceramide synthase from potentially any organism.  相似文献   

11.
Introduction: Mass spectrometry has played an important role in protein biomarker discovery. Yet, very few of the candidate biomarkers have been validated, and mass spectrometry-based protein tests have not made a significant inroad into clinical laboratories.

Areas covered: Offered here is a unique perspective on the future of mass spectrometry protein tests, in view of the following determinants: the true demand for such clinical tests, end-users requirements, platforms and systems design, sample preparation bottlenecks, analytical and clinical validation, and regulatory approval.

Expert commentary: Fresh thoughts and attitudes toward MS protein tests are required in order to move them toward clinical utilization and diagnostic use en masse, with critical emphasis on content, simplicity and cost. In its current format and state of the art, they are simply not ready for prime time.  相似文献   


12.
Site-directed mutagenesis followed by functional characterization is a widely used approach to obtain information on the structure-function relationship of proteins. Due to time and cost considerations, the number of amino acids studied is frequently reduced. To address the need for convenient parallel production of numerous point mutants of a protein, we developed an automated method to perform classical site-directed mutagenesis, protein purification, and characterization in a high-throughput manner. The process consists of a succession of six fully automated protocols that can be adapted to any automated liquid handling systems. Our procedure allows construction, validation, and characterization of hundreds of site-directed mutants of a given protein in just 4 days. The method is especially adapted to projects aiming at the study of unique or multiple mutants without the need to construct and screen large libraries of random mutants. The usefulness of the technique is illustrated by the construction and characterization of tens of single mutants of the penicillin-binding protein 2x (PBP2x) from Streptococcus pneumoniae. Moreover, seven mutations of PBP2x were obtained simultaneously in a single experiment with efficiency close to 90%.  相似文献   

13.
Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers has been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses.  相似文献   

14.
Characterization of protein-carbohydrate interactions at the molecular level is important for understanding many glycan-mediated processes. Here we present a method for the identification of glycan ligands of carbohydrate-binding proteins. The glycans released from natural sources are labeled with biotinamidocaproyl hydrazide (BACH) and subsequently fractionated by high-performance liquid chromatography. Glycan fractions are screened for binding to carbohydrate-binding proteins (CBPs) using a microtitration plate binding assay; CBPs are immobilized, BACH-glycan fractions are added, and bound BACH-glycans are detected using alkaline phosphatase-conjugated streptavidin. The glycan structures in binding fractions are studied by (tandem) mass spectrometry, exoglycosidase treatment, and rechromatography, thereby revealing the glycan motifs recognized by the CBPs. Subsequent surface plasmon resonance experiments using a reverse setup with immobilization of the BACH-glycan ligands on streptavidin-coated surfaces provide more information on glycan-CBP interactions via association and dissociation curves. The presented method is easy and fast, and the required instrumentation is available in many laboratories. The assay is very sensitive given that both the mass spectrometric analysis and the microtitration plate binding assay can be performed on femtomole amounts of BACH-glycans. This approach should be generally applicable to study and structurally identify carbohydrate ligands of anti-glycan antibodies and lectins.  相似文献   

15.
Kynurenine aminotransferases convert kynurenine to kynurenic acid and play an important role in the tryptophan degradation pathway. Kynurenic acid levels in brain have been hypothesized to be linked to a number of central nervous system (CNS) disorders. Kynurenine aminotransferase II (KATII) has proven to be a key modulator of kynurenic acid levels in brain and, thus, is an attractive target to treat CNS diseases. A sensitive, high-throughput, label-free RapidFire mass spectrometry assay has been developed for human KATII. Unlike other assays, this method is directly applicable to KATII enzymes from different animal species, which allows us to select proper animal model(s) to evaluate human KATII inhibitors. We also established a coupled fluorescence assay for human KATII. The short assay time and kinetic capability of the fluorescence assay provide a useful tool for orthogonal inhibitor validation and mechanistic studies.  相似文献   

16.
Mass spectrometry (MS) has been a major driver for metabolomics, and gas chromatography (GC)-MS has been one of the primary techniques used for microbial metabolomics. The use of liquid chromatography (LC)-MS has however been limited, but electrospray ionization (ESI) is very well suited for ionization of microbial metabolites without any previous derivatization needed. To address the capabilities of ESI-MS in detecting the metabolome of Saccharomyces cerevisiae, the in silico metabolome of this organism was used as a template to present a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high mass accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI of microbial metabolites. This systematic analysis gave insight into the ionization and fragmentation characteristics of the different metabolites. With this insight, a small study of metabolic footprinting with ESI-MS demonstrated that biological information can be extracted from footprinting spectra. Statistical analysis of the footprinting data revealed discriminating ions, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool for extraction of metabolic differences, which can guide new targeted biological experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Factor VII (FVII) is a vitamin K-dependent glycoprotein which, in its activated form (FVIIa), participates in the coagulation process by activating factor X and factor IX. FVII is secreted as single peptide chain of 406 residues. Plasma-derived FVII undergoes many post-translational modifications such as γ-carboxylation, N- and O-glycosylation, β-hydroxylation. Despite glycosylation of recombinant FVIIa has been fully characterized, nothing is reported on the N- and O-glycans of plasma-derived FVII (pd-FVII) and on their structural heterogeneity at each glycosylation site. N- and O-glycosylation sites and site specific heterogeneity of pd-FVII were studied by various complementary qualitative and quantitative techniques. A MALDI-MS analysis of the native protein indicated that FVII is a 50.1 kDa glycoprotein modified on two sites by diantennary, disialylated non-fucosylated (A2S2) glycans. LC–ESIMS/MS analysis revealed that both light chain and heavy chain were N-glycosylated mainly by A2S2 but also by triantennary sialylated glycans. Nevertheless, lower amounts of triantennary structures were found on Asn322 compared to Asn145. Moreover, the triantennary glycans were shown to be fucosylated. In parallel, quantitative analysis of the isolated glycans by capillary electrophoresis indicated that the diantennary structures represented about 50% of the total glycan content. Glycan sequencing using different glycanases led to the identification of triantennary difucosylated structures. Last, MS and MS/MS analysis revealed that FVII is O-glycosylated on the light chain at position Ser60 and Ser52 which are modified by oligosaccharide structures such as fucose and Glc(Xyl)0–1–2, respectively. These latter three O-glycans coexist in equal amounts in plasma-derived FVII.  相似文献   

18.
With the increasing use of capillary electrophoresis (CE) in the biotechnology industry, there is a demand for analytical tools and methodology that can be used to characterize CE profiles. This article describes the implementation and optimization of a robust online CE-mass spectrometry (CE-MS) system used for the characterization of several CE assays developed at Genentech Inc. These assays include CE as a complement to reverse-phase peptide mapping for the identification of small peptides eluting in the void volume, profiling N-linked glycopeptide heterogeneity, and determining O-linked site occupancy. In addition, CE-MS was used to confirm major 8-aminopyrene-1,3,6-trisulfonate (APTS)-labeled glycans released from recombinant antibodies that are routinely profiled by CE-laser-induced fluorescence (CE-LIF). For each study, CE-MS was able to successfully identify components seen in UV or LIF electropherograms, thereby expanding the capability of CE and CE-MS for profiling biomolecules.  相似文献   

19.
In the present study, we have used a combination of 2-DE and MS to isolate and characterize two variants of the mitochondrial complex I subunit NDUFA10 from Wistar rat brain. Extensive MS/MS analysis revealed that a D/N substitution at position 120 resulting from a 353A/G transition in the coding gene is the biochemical difference between the two most abundant NDUFA10 isoforms. Moreover, 33 modifications of distinct chemical nature targeting 59 specific residues were found to be common to the acidic and basic forms. Positions C67, H149 and H322 of NDUFA10 were specially targeted by different modifications suggesting the high reactivity of these residues and their potential implication in the regulation of the protein function. Together with nonenzymatic modifications that can form in the sample isolation and workup steps, such as oxidation of methionine, tryptophan, cysteine and histidine, we describe amino acid variants of unknown chemical structure that must be further characterized, as well as accumulation of R, K and H methylations and probably K acetylations at the C-terminal region that might play a role in the control of NDUFA10 activity according to similar mechanisms to those described for histones.  相似文献   

20.
In traditional approaches, mitochondrial DNA (mtDNA) variation is exploited for forensic identity testing by sequencing the two hypervariable regions of the human mtDNA control region. To reduce time and labor, single nucleotide polymorphism (SNP) assays are being sought to possibly replace sequencing. However, most SNP assays capture only a portion of the total variation within the desired regions, require a priori knowledge of the position of the SNP in the genome, and are generally not quantitative. Furthermore, with mtDNA, the clustering of SNPs complicates the design of SNP extension primers or hybridization probes. This article describes an automated electrospray ionization mass spectrometry method that can detect a number of clustered SNPs within an amplicon without a priori knowledge of specific SNP positions and can do so quantitatively. With this technique, the base composition of a PCR amplicon, less than 140 nucleotides in length, can be calculated. The difference in base composition between two samples indicates the presence of an SNP. Therefore, no post-PCR analytical construct needs to be developed to assess variation within a fragment. Of the 2754 different mtDNA sequences in the public forensic mtDNA database, nearly 90% could be resolved by the assay. The mass spectrometer is well suited to characterize and quantitate heteroplasmic samples or those containing mixtures. This makes possible the interpretation of mtDNA mixtures (as well as mixtures when assaying other SNPs). This assay can be expanded to assess genetic variation in the coding region of the mtDNA genome and can be automated to facilitate analysis of a large number of samples such as those encountered after a mass disaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号