首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The signal peptide plays an important role in protein targeting and protein translocation in both prokaryotic and eukaryotic cells. This transient, short peptide sequence functions like a postal address on an envelope by targeting proteins for secretion or for transfer to specific organelles for further processing. Understanding how signal peptides function is crucial in predicting where proteins are translocated. To support this understanding, we present SPdb signal peptide database , a repository of experimentally determined and computationally predicted signal peptides.  相似文献   

2.
3.
Urocortin: a cardiac protective peptide?   总被引:2,自引:0,他引:2  
Urocortin (UCN), a member of the corticotropin-releasing hormone (CRH)-related peptides, has been reported to play biologically diverse roles in several systems such as cardiovascular, reproductive, appetite, stress, inflammatory responses, etc. In heart, it was reported to have protective effects. On the other hand, it was also reported to have cardiac inotropic and hypertrophic effects and hence to cause cardiac remodeling. This paper will review the effects of UCN in cardiac system.  相似文献   

4.
Abstract

In this perspective review, we focalized our attention on the application of cyclotides in drug discovery. To date, two principal approaches have been explored since now: (i) the use of cyclotides as scaffold in which bioactive peptides can be grafted to improve stability, oral bioactivity and binding to GPCRs; (ii) their application as natural peptides library. For these reasons, cyclotides probably represent today a step further in the development of new tools in drug design.  相似文献   

5.
Alzheimer's disease involves progressive neuronal loss. Linked to the disease is the amyloid β (Aβ) peptide, a 38-43-amino acid peptide found in extracellular amyloid plaques in the brain. Cyclodextrins are nontoxic, cone-shaped oligosaccharides with a hydrophilic exterior and a hydrophobic cavity making them suitable hosts for aromatic guest molecules in water. β-Cyclodextrin consists of seven α-d-glucopyranoside units and has been shown to reduce the level of fibrillation and neurotoxicity of Aβ. We have studied the interaction between Aβ and a β-cyclodextrin dimer, consisting of two β-cyclodextrin monomers connected by a flexible linker. The β-cyclodextrin monomer has been found to interact with Aβ(1-40) at sites Y10, F19, and/or F20 with a dissociation constant (K(D)) of 3.9 ± 2.0 mM. Here (1)H-(15)N and (1)H-(13)C heteronuclear single-quantum correlation nuclear magnetic resonance (NMR) spectra show that in addition, the β-cyclodextrin monomer and dimer bind to the histidines. NMR translational diffusion experiments reveal the increased affinity of the β-cyclodextrin dimer (apparent K(D) of 1.1 ± 0.5 mM) for Aβ(1-40) compared to that of the β-cyclodextrin monomer. Kinetic aggregation experiments based on thioflavin T fluorescence indicate that the dimer at 0.05-5 mM decreases the lag time of Aβ aggregation, while a concentration of 10 mM increases the lag time. The β-cyclodextrin monomer at a high concentration decreases the lag time of the aggregation. We conclude that cyclodextrin monomers and dimers have specific, modulating effects on the Aβ(1-40) aggregation process. Transmission electron microscopy shows that the regular fibrillar aggregates formed by Aβ(1-40) alone are replaced by a major fraction of amorphous aggregates in the presence of the β-cyclodextrin dimer.  相似文献   

6.
Alzheimer's disease research has been at an impasse in recent years with lingering questions about the involvement of Amyloid-β (Aβ). Early versions of the amyloid hypothesis considered Aβ something of an undesirable byproduct of APP processing that wreaks havoc on the human neocortex, yet evolutionary conservation--over three hundred million years--indicates this peptide plays an important biological role in survival and reproductive fitness. Here we describe how Aβ regulates blood vessel branching in tissues as varied as human umbilical vein and zebrafish hindbrain. High physiological concentrations of Aβ monomer induced angiogenesis by a conserved mechanism that blocks γ-secretase processing of a Notch intermediate, NEXT, and reduces the expression of downstream Notch target genes. Our findings allude to an integration of signaling pathways that utilize γ-secretase activity, which may have significant implications for our understanding of Alzheimer's pathogenesis vis-à-vis vascular changes that set the stage for ensuing neurodegeneration.  相似文献   

7.
α-Hordothionin (αHTH) belongs to thionins, the plant antimicrobial peptides with membrane-permeabilizing activity which is associated with broad-range antimicrobial activity. Experimental data have revealed a phospholipid-binding site and indicated formation of ion channels as well as membrane disruption activity of thionin. However, the mechanism of membrane permeabilization by thionin remained unknown. Here it is shown that thionin is a small water-selective channel. Unbiased high-precision molecular modeling revealed formation of a water-selective pore running through the αHTH double α-helix core when the peptide interacted with anions. Anion-induced unfolding of the C-end of the α2-helix opened a pore mouth. The pore started at the α2 C-end between the hydrophilic and the hydrophobic regions of the peptide surface and ended in the middle of the unique hydrophobic region at the C-end of the α1-helix. Highly conserved residues including cysteines and tyrosine lined the pore walls. A large positive electrostatic potential accumulated inside the pore. The narrow pore was, nonetheless, sufficient to accommodate at least one water molecule along the channel except for two constriction sites. Both constriction sites were formed by residues participating in the phospholipid-binding site. The channel properties resembled that of aquaporins with two selectivity filters, one at the entrance, inside the α2 C-end cavity, and a second in the middle of the channel. It is proposed that the αHTH water channel delivers water molecules to the bilayer center that leads to local membrane disruption. The proposed mechanism of membrane permeabilization by thionins explains seemingly controversial experimental data.  相似文献   

8.
Glioblastoma is an aggressive malignant brain tumor that starts in the brain or spine and frequently recurs after anticancer treatment. The development of an accurate diagnostic system combined with effective cancer therapy is essential to improve prognosis of glioma patients. Peptides, produced from phage display, are attractive biomolecules for glioma treatment because of their biostability, nontoxicity, and small size. In this study, we employed phage display methodology to screen for peptides that specifically recognize the target PKCδ as a novel biomarker for glioma. The phage library screening yielded four different peptides displayed on phages with a 20- to 200-pM Kd value for the recombinant PKCδ catalytic domain. Among these four phage peptides, we selected one to synthesize and tagged it with fluorescein isothiocyanate (FITC) based on the sequence of the PKCδ-binding phage clone. The synthetic peptide showed a relative binding affinity for antibody and localization in the U373 glioma cell. The kinase activity of PKCδ was inhibited by FITC-labeled peptide with an IC50 of 1.4 μM in vitro. Consequently, the peptide found in this study might be a promising therapeutic agent against malignant brain tumor.  相似文献   

9.
In α-complementation, inactive N-terminal (α-domain) and C-terminal (ω-domain) fragments of β-galactosidase associate to reconstitute the active protein. To date, the effect of α-domain size on α-complementation activity has not been systematically investigated. In this study, we compared the complementation activities of α-domains of various sizes using an in vitro system. We found that the complementation activities are similar for α-domains comprising between 45 and 229 N-terminal residues but are significantly decreased for those containing less than 37 residues. However, these smaller α-domains (15 and 25 residues) exhibited sufficient α-complementation activity for application as reporters.  相似文献   

10.
Summary In a previous communication we reported the racemic synthesis of the cis peptide bond mimic α-benzyl-o-aminomethylphenylacetic acid and its incorporation in the cyclic somatostatin analoguesc[α(R andS)Bn-o-AMPA-Phe7-d-Trp8-Lys9-Thr10]. Since the epimeric peptides exhibit different binding affinities, we completed the structure-activity study with an asymmetric synthesis. A model for the solution conformation ofc[α(R andS)Bn-o-AMPA-Phe7-d-Trp8-Lys9-Thr10] is proposed on the basis of a 2D NMR study in CD3OH and restrained molecular dynamics.  相似文献   

11.
Summary Continuous Stirred Tank Membrane Reactor was used to investigate the continuous and selective extraction of a bioactive peptide-CN (193–209) from bovine-casein/chymosin hydrolysate. It was shown that the feasibility of the process depends on the nature and the area of ultrafiltration membrane used. With an inorganic (carbon-zirconia) membrane, high retention of the peptide constitutes a limit to the operation. However, when the reactor was equipped with a cellulosic type membrane, satisfactory transmission of the peptide was obtained. As shown by RP-HPLC and mass spectrometry analysis, only-CN (193–209) permeates through the membrane.  相似文献   

12.
《Biophysical journal》2021,120(21):4786-4797
Spontaneous unidirectional, or vectorial, insertion of transmembrane peptides is a fundamental biophysical process for toxin and viral actions. Polytheonamide B (pTB) is a potent cytotoxic peptide with a β6.3-helical structure. Previous experimental studies revealed that the pTB inserts into the membrane in a vectorial fashion and forms a channel with its single molecular length long enough to span the membrane. Also, molecular dynamics simulation studies demonstrated that the pTB is prefolded in aqueous solution. These are unique features of pTB because most of the peptide toxins form channels through oligomerization of transmembrane helices. Here, we performed all-atom molecular dynamics simulations to examine the dynamic mechanism of the vectorial insertion of pTB, providing underlying elementary processes of the membrane insertion of a prefolded single transmembrane peptide. We find that the insertion of pTB proceeds with only the local lateral compression of the membrane in three successive phases: “landing,” “penetration,” and “equilibration” phases. The free energy calculations using the replica-exchange umbrella sampling simulations present an energy cost of 4.3 kcal/mol at the membrane surface for the membrane insertion of pTB from bulk water. The trajectories of membrane insertion revealed that the insertion process can occur in two possible pathways, namely “trapped” and “untrapped” insertions; in some cases, pTB is trapped in the upper leaflet during the penetration phase. Our simulations demonstrated the importance of membrane anchoring by the hydrophobic N-terminal blocking group in the landing phase, leading to subsequent vectorial insertion.  相似文献   

13.
Rode BM  Flader W  Sotriffer C  Righi A 《Peptides》1999,20(12):1513-1516
The rather unique properties of prions and their presence in very different kinds of living species suggest that this type of molecule was created at a very early stage of evolution and may even represent a relic from a time where peptide evolution was ongoing and RNA/DNA did not yet exist. A comparison of the most frequently occurring amino acid sequences in known prions with the sequences preferentially formed in the salt-induced peptide formation reaction, the most simple mechanism enabling the formation of peptides under primitive earth conditions, shows a remarkable coincidence that strongly supports this hypothesis.  相似文献   

14.
We study computationally a family of β-hairpin peptides with systematically introduced chiral inversions, in explicit water, and we investigate the extent to which the backbone structure is able to fold in the presence of heterochiral perturbations. In contrast to the recently investigated case of a helical peptide, we do not find a monotonic change in secondary structure content as a function of the number of L- to D-inversions. The effects of L- to D-inversions are instead found to be highly position-specific. Additionally, in contrast to the helical peptide, some inversions increase the stability of the folded peptide: in such cases, we compute an increase in β-sheet content in the aqueous solution equilibrium ensemble. However, the tertiary structures of the stable (folded) configurations for peptides for which inversions cause an increase in β-sheet content show differences from one another, as well as from the native fold of the nonchirally perturbed β-hairpin. Our results suggest that although some chiral perturbations can increase folding stability, chirally perturbed proteins may still underperform functionally, given the relationship between structure and function.  相似文献   

15.
The interaction of the synthetic antimicrobial peptide P5 (KWKKLLKKPLLKKLLKKL-NH2) with model phospholipid membranes was studied using solid-state NMR and circular dichroism (CD) spectroscopy. P5 peptide had little secondary structure in buffer, but addition of large unilamellar vesicles (LUV) composed of dimyristoylphosphatidylcholine (DMPC) increased the β-sheet content to ~20%. Addition of negatively charged LUV, DMPC–dimyristoylphosphatidylglycerol (DMPG) 2:1, led to a substantial (~40%) increase of the α-helical conformation. The peptide structure did not change significantly above and below the phospholipid phase transition temperature. P5 peptide interacted differently with DMPC bilayers with deuterated acyl chains (d54-DMPC) and mixed d54-DMPC–DMPG bilayers, used to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC vesicles, P5 peptide had no significant interaction apart from slightly perturbing the upper region of the lipid acyl chain with minimum effect at the terminal methyl groups. By contrast, in the DMPC–DMPG vesicles the peptide increased disorder throughout the entire acyl chain of DMPC in the mixed bilayer. P5 promoted disordering of the headgroup of neutral membranes, observed by 31P NMR. However, no perturbations in the T 1 relaxation nor the T 2- values were observed at 30°C, although a slight change in the dynamics of the headgroup at 20°C was noticeable compared with peptide-free vesicles. However, the P5 peptide caused similar perturbations of the headgroup of negatively charged vesicles at both temperatures. These data correlate with the non-haemolytic activity of the P5 peptide against red blood cells (neutral membranes) while inhibiting bacterial growth (negatively charged membranes).  相似文献   

16.
Pulmonary fibrosis encompasses several respiratory diseases characterized by epithelial cell injury, inflammation and fibrosis. Transforming growth factor (TGF)-β1 is one of the main profibrogenic cytokines involved in the pathogenesis of lung fibrosis. It induces fibroblast differentiation into myofibroblasts, which produce high levels of collagen and concomitantly loss of lung elasticity and reduction of the respiratory function. In the present study, we have investigated the effects of P17 (a TGF-β inhibitor peptide) on IMR-90 lung fibroblast differentiation in vitro, as well as on the inhibition of the development of bleomycin-induced pulmonary fibrosis in mice. It was found that in IMR-90 cells, P17 inhibited TGF-β1-induced expression of connective tissue growth factor and α-smooth muscle actin. In vivo, treatment of mice with P17 2days after bleomycin administration decreased lung fibrosis, areas of myofibroblast-like cells and lymphocyte infiltrate. P17 also reduced mRNA expression of collagen type I, fibronectin and the fibronectin splice isoform EDA in the lung, and increased the expression of IFN-γ mRNA. Finally, therapeutic treatment with P17 in mice with already established fibrosis was able to significantly attenuate the progression of lung fibrosis. These results suggest that P17 may be useful in the treatment of pulmonary fibrosis.  相似文献   

17.
A component of the chemical language shared by the immune and nervous system is the expression of neuropeptides by immune cells. Vasoactive intestinal peptide (VIP) was shown to be produced by T lymphocytes. Here we investigate whether T cell subsets differentially express VIP. Our studies indicate that, upon specific Ag stimulation, Th2 and T2 cells, but not Th1 and T1 cells derived from TCR transgenic (Tg) mice, express VIP mRNA and protein, and secrete VIP. Following immunization with the specific Ag, significant levels of VIP are present in the serum of syngeneic, non-Tg hosts that receive Th2, but not Th1 Tg cells. Th2 Tg cells recovered from the non-Tg hosts immunized with the specific Ag, but not with an irrelevant Ag, express intracellular VIP. Because VIP is produced by Ag-stimulated type 2 T cells, and differentially affects Th1 and Th2 cells, could VIP be viewed as a type 2 cytokine?  相似文献   

18.
Successful manual synthesis of the TD2.2 peptide acting as a blood–brain barrier shuttle was achieved. TD2.2 was successfully synthesised by sequential condensation of four protected peptide fragments on solid-phase settings, after several unsuccessful attempts using the stepwise approach. These fragments were chosen to minimise the number of demanding amino acids (in terms of coupling, Fmoc removal) in each fragment that are expected to hamper the overall synthetic process. Thus, the hydrophobic amino acids as well as Arg(Pbf) were strategically spread over multiple fragments rather than having them congested in one fragment. This study shows how a peptide that shows big challenges in the synthesis using the common stepwise elongation methodology can be synthesised with an acceptable purity. It also emphasises that choosing the right fragment with certain amino acid constituents is key for a successful synthesis. It is worth highlighting that lower amounts of reagents were required to synthesise the final peptide with an identical purity to that obtained by the automatic synthesiser.  相似文献   

19.
20.
The flexible peptides (GGGGS)n (n < or = 3), the alpha-helical peptides (EAAAK)n (n < or = 3) and two other peptides were used as linkers to construct bifunctional fusions of beta-glucanase (Glu) and xylanase (Xyl) for improved catalytic efficiencies of both moieties. Eight Glu-Xyl fusion enzymes constructed with different linkers were all expressed as the proteins of ca. 46 kDa in Escherichia coli BL21 and displayed the activities of both beta-glucanase and xylanase. Compared to all the characterized fusions with the parental enzymes, the catalytic efficiencies of the Glu and Xyl moieties were equivalent to 304-426% and 82-143% of the parental ones, respectively. The peptide linker (GGGGS)(2) resulted in the best fusion, whose catalytic efficiency had a net increase of 326% for the Glu and of 43% for the Xyl. The two moieties of a fusion with the linker (EAAAK)(3) also showed net increases of 262 and 31% in catalytic efficiency. Our results highlight, for the first time, the enhanced bifunctional activities of the Glu-Xyl fusion enzyme by optimizing the peptide linkers to separate the two moieties at a reasonable distance for beneficial interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号