首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutant superoxide dismutase-1 (SOD1) has an unidentified toxic property that provokes ALS. Several ALS-linked SOD1 mutations cause long C-terminal truncations, which suggests that common cytotoxic SOD1 conformational species should be misfolded and that the C-terminal end cannot be involved. The cytotoxicity may arise from interaction of cellular proteins with misfolded SOD1 species. Here we specifically immunocaptured misfolded SOD1 by the C-terminal end, from extracts of spinal cords from transgenic ALS model mice. Associated proteins were identified with proteomic techniques. Two transgenic models expressing SOD1s with contrasting molecular properties were examined: the stable G93A mutant, which is abundant in the spinal cord with only a tiny subfraction misfolded, and the scarce disordered truncation mutant G127insTGGG. For comparison, proteins in spinal cord extracts with affinity for immobilized apo G93A mutant SOD1 were determined. Two-dimensional gel patterns with a limited number of bound proteins were found, which were similar for the two SOD1 mutants. Apart from neurofilament light, the proteins identified were all chaperones and by far most abundant was Hsc70. The immobilized apo G93A SOD1, which would populate a variety of conformations, was found to bind to a considerable number of additional proteins. A substantial proportion of the misfolded SOD1 in the spinal cord extracts appeared to be chaperone-associated. Still, only about 1% of the Hsc70 appeared to be associated with misfolded SOD1. The results argue against the notion that chaperone depletion is involved in ALS pathogenesis in the transgenic models and in humans carrying SOD1 mutations.  相似文献   

2.
Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutant and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology.  相似文献   

3.
The optimal conditions for the endogenous phosphorylation of hen spinal cord cytosolic and membrane proteins with 5 μM [γ-32P]ATP, 10 mM MgCl2, were determined by 10% SDS-polyacrylamide gel electrophoresis, autoradiography, and microdensitometry. Phosphate incorporation increased linearly with concentrations ranging from 35–75 μg/100 μl for cytosolic proteins and 21–125 μg/200 μl for membrane proteins. Optimal incubation times, temperatures, and pH values were 60 s, 30°C, and 6.0, respectively, for spinal cord cytosolic proteins and 15 s, 45°C, and 8.0, respectively, for spinal cord membranes. Prominent species differences in protein phosphorylation between these fractions in hens and similarly prepared fractions in rats, co-electrophoresed, include 80K and 30K protein phosphate acceptors unique to rat spinal cord cytosol, 60K and 16K protein phosphate acceptors characteristic of rat spinal cord membranes, a 50K protein phosphate acceptor present only in hen spinal cord membranes, and greater phosphorylation of a more abundant 20K protein in both hen spinal cord fractions. The functional significance of these differences is presently unclear. However, their characterization provides a basis from which to launch future investigations of the biochemistry, pharmacology, and toxicology of spinal cord protein phosphorylation and indicates that caution should be exercised in the choice of an animal model with characteristics appropriate to those of the system it is representing.  相似文献   

4.
One of the causes of amyotrophic lateral sclerosis (ALS) is due to mutations in Cu,Zn-superoxide dismutase (SOD1). The mutant protein exhibits a toxic gain of function that adversely affects the function of neurons in the spinal cord, brain stem, and motor cortex. A proteomic analysis of protein expression in a widely used mouse model of ALS was undertaken to identify differences in protein expression in the spinal cords of mice expressing a mutant protein with the G93A mutation found in human ALS. Protein profiling was done on soluble and particulate fractions of spinal cord extracts using high throughput two-dimensional liquid chromatography coupled to tandem mass spectrometry. An integrated proteomics-informatics platform was used to identify relevant differences in protein expression based upon the abundance of peptides identified by database searching of mass spectrometry data. Changes in the expression of proteins associated with mitochondria were particularly prevalent in spinal cord proteins from both mutant G93A-SOD1 and wild-type SOD1 transgenic mice. G93A-SOD1 mouse spinal cord also exhibited differences in proteins associated with metabolism, protein kinase regulation, antioxidant activity, and lysosomes. Using gene ontology analysis, we found an overlap of changes in mRNA expression in presymptomatic mice (from microarray analysis) in three different gene categories. These included selected protein kinase signaling systems, ATP-driven ion transport, and neurotransmission. Therefore, alterations in selected cellular processes are detectable before symptomatic onset in ALS mouse models. However, in late stage disease, mRNA expression analysis did not reveal significant changes in mitochondrial gene expression but did reveal concordant changes in lipid metabolism, lysosomes, and the regulation of neurotransmission. Thus, concordance of proteomic and mRNA expression data within multiple categories validates the use of gene ontology analysis to compare different types of "omic" data.  相似文献   

5.
A dominant mutation in the gene for copper-zinc superoxide dismutase (SOD1) is the most frequent cause of the inherited form of amyotrophic lateral sclerosis. Mutant SOD1 provokes progressive degeneration of motor neurons by an unidentified acquired toxicity. Exploiting both affinity purification and mass spectrometry, we identified a novel interaction between heat-shock protein 105 (Hsp105) and mutant SOD1. We detected this interaction both in spinal cord extracts of mutant SOD1(G93A) transgenic mice and in cultured neuroblastoma cells. Expression of Hsp105, which is found in mouse motor neurons, was depressed in the spinal cords of SOD1(G93A) mice as disease progressed, while levels of expression of two other heat-shock proteins, Hsp70 and Hsp27, were elevated. Moreover, Hsp105 suppressed the formation of mutant SOD1-containing aggregates in cultured cells. These results suggest that techniques that raise levels of Hsp105 might be promising tools for alleviation of the mutant SOD1 toxicity.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressing disease of the central nervous system that is characterized by motor neuron degeneration in the brainstem and the spinal cord. Matrix‐assisted laser desorption/ionization (MALDI) imaging mass spectrometry is an emerging powerful technique that allows for spatially resolved, comprehensive, and specific characterization of molecular species in situ. In this study, we report for the first time the MALDI imaging‐based spatial protein profiling and relative quantification of post‐mortem human spinal cord samples obtained from ALS patients and controls. In normal spinal cord, protein distribution patterns were well in line with histological features. For example, thymosin beta 4, ubiquitin, histone proteins, acyl‐CoA‐binding protein, and macrophage inhibitory factor were predominantly localized to the gray matter. Furthermore, unsupervised statistics revealed a significant reduction of two protein species in ALS gray matter. One of these proteins (m/z 8451) corresponds to an endogenous truncated form of ubiquitin (Ubc 1–76), with both C‐terminal glycine residues removed (Ubc‐T/Ubc 1–74). This region‐specific ubiquitin processing suggests a disease‐related change in protease activity. These results highlight the importance of MALDI mass spectrometry as a versatile approach to elucidate molecular mechanisms of neurodegenerative diseases.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motor neuron degeneration that ultimately results in progressive paralysis and death. Growing evidence indicates that mitochondrial dysfunction and oxidative stress contribute to motor neuron degeneration in ALS. To further explore the hypothesis that mitochondrial dysfunction and nitroxidative stress contribute to disease pathogenesis at the in vivo level, we assessed whether the mitochondria-targeted antioxidant [10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl]triphenylphosphonium methane sulfonate (MitoQ) can modify disease progression in the SOD1G93A mouse model of ALS. To do this, we administered MitoQ (500 µM) in the drinking water of SOD1G93A mice from a time when early symptoms of neurodegeneration become evident at 90 days of age until death. This regime is a clinically plausible scenario and could be more easily translated to patients as this corresponds to initiating treatment of patients after they are first diagnosed with ALS. MitoQ was detected in all tested tissues by liquid chromatography/mass spectrometry after 20 days of administration. MitoQ treatment slowed the decline of mitochondrial function, in both the spinal cord and the quadriceps muscle, as measured by high-resolution respirometry. Importantly, nitroxidative markers and pathological signs in the spinal cord of MitoQ-treated animals were markedly reduced and neuromuscular junctions were recovered associated with a significant increase in hindlimb strength. Finally, MitoQ treatment significantly prolonged the life span of SOD1G93A mice. Our results support a role for mitochondrial nitroxidative damage and dysfunction in the pathogenesis of ALS and suggest that mitochondria-targeted antioxidants may be of pharmacological use for ALS treatment.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron degeneration, paralysis, and death. Mutant Cu,Zn-superoxide dismutase (SOD1) causes a subset of ALS by an unidentified toxic property. Increasing evidence suggests that chaperone dysfunction plays a role in motor neuron degeneration in ALS. To investigate the relationship between mutant SOD1 expression and chaperone dysfunction, we measured chaperone function in central nervous system tissue lysates from normal mice and transgenic mice expressing human SOD1 variants. We observed a significant decrease in chaperone activity in tissues from mice expressing ALS-linked mutant SOD1 but not control mice expressing human wild type SOD1. This decrease was detected only in the spinal cord, became apparent by 60 days of age (before the onset of muscle weakness and significant motor neuron loss), and persisted throughout the late stages. In addition, this impairment of chaperone activity occurred only in cytosolic but not in mitochondrial and nuclear fractions. Furthermore, multiple recombinant human SOD1 mutants with differing biochemical and biophysical properties inhibited chaperone function in a cell-free extract of normal mouse spinal cords. Thus, mutant SOD1 proteins may impair chaperone function independent of gene expression in vivo, and this inhibition may be a shared property of ALS-linked mutant SOD1 proteins.  相似文献   

9.
Formation of misfolded protein aggregates is a remarkable hallmark of various neurodegenerative diseases including Alzheimer disease, Parkinson disease, Huntington disease, prion encephalopathies, and amyotrophic lateral sclerosis (ALS). Superoxide dismutase 1 (SOD1) immunoreactive inclusions have been found in the spinal cord of ALS animal models and patients, implicating the close involvement of SOD1 aggregates in ALS pathogenesis. Here we examined the molecular mechanism of aggregate formation of ALS-related SOD1 mutants in vitro. We found that long-chain unsaturated fatty acids (FAs) promoted aggregate formation of SOD1 mutants in both dose- and time-dependent manners. Metal-deficient SOD1s, wild-type, and mutants were highly oligomerized compared with holo-SOD1s by incubation in the presence of unsaturated FAs. Oligomerization of SOD1 is closely associated with its structural instability. Heat-treated holo-SOD1 mutants were readily oligomerized by the addition of unsaturated FAs, whereas wild-type SOD1 was not. The monounsaturated FA, oleic acid, directly bound to SOD1 and was characterized by a solid-phase FA binding assay using oleate-Sepharose. The FA binding characteristics were closely correlated with the oligomerization propensity of SOD1 proteins, which indicates that FA binding may change SOD1 conformation in a way that favors the formation of aggregates. High molecular mass aggregates of SOD1 induced by FAs have a granular morphology and show significant cytotoxicity. These findings suggest that SOD1 mutants gain FA binding abilities based on their structural instability and form cytotoxic granular aggregates.  相似文献   

10.
Abstract: The Gly93→Ala mutation in the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene (SOD1) found in some familial amyotrophic lateral sclerosis (FALS) patients has been shown to result in an aberrant increase in hydroxyl radical production by the mutant enzyme that may cause oxidative injury to spinal motor neurons. In the present study, we analyzed the extent of oxidative injury to lumbar and cervical spinal cord proteins in transgenic FALS mice that overexpress the SOD1 mutation [TgN(SOD1-G93A)G1H] in comparison with nontransgenic mice. Total protein oxidation was examined by spectrophotometric measurement of tissue protein carbonyl content by the dinitrophenylhydrazine (DNPH) assay. Four ages were investigated: 30 (pre-motor neuron pathology and clinical disease), 60 (after initiation of pathology, but pre-disease), 100 (~50% loss of motor neurons and function), and 120 (near complete hindlimb paralysis) days. Protein carbonyl content in 30-day-old TgN(SOD1-G93A)G1H mice was twice as high as the level found in age-matched nontransgenic mice. However, at 60 and 100 days of age, the levels were the same. Then, between 100 and 120 days of age, the levels in the TgN(SOD1-G93A)G1H mice increased dramatically (557%) compared with either the nontransgenic mice or transgenic animals that overexpress the wild-type human Cu,Zn-SOD [TgN(SOD1)N29]. The 100–120-day increase in spinal cord protein carbonyl levels was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic separation and western blot immunoassay, which enabled the identification of heavily oxidized individual proteins using a monoclonal antibody against DNPH-derivatized proteins. One of the more heavily oxidized protein bands (14 kDa) was identified by immunoprecipitation as largely Cu,Zn-SOD. Western blot comparison of the extent of Cu,Zn-SOD protein carbonylation revealed that the level in spinal cord samples from 120-day-old TgN(SOD1-G93A)G1H mice was significantly higher than that found in age-matched nontransgenic or TgN(SOD1)N29 mice. These results suggest that the increased hydroxyl radical production associated with the G93A SOD1 mutation and/or lipid peroxidation-derived radical species (peroxyl or alkoxyl) causes extensive protein oxidative injury and that the Cu,Zn-SOD itself is a key target, which may compromise its antioxidant function.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a progressive neurode-generative disease characterized by motor neuron death. A hallmark of the disease is the appearance of protein aggregates in the affected motor neurons. We have found that p62, a protein implicated in protein aggregate formation, accumulated progressively in the G93A mouse spinal cord. The accumulation of p62 was in parallel to the increase of polyubiquitinated proteins and mutant SOD1 aggregates. Immunostaining studies showed that p62, ubiquitin, and mutant SOD1 co-localized in the protein aggregates in affected cells in G93A mouse spinal cord. The p62 protein selectively interacted with familial ALS mutants, but not WT SOD1. When p62 was co-expressed with SOD1 in NSC34 cells, it greatly enhanced the formation of aggregates of the ALS-linked SOD1 mutants, but not wild-type SOD1. Cell viability was measured in the presence and absence of overexpressed p62, and the results suggest that the large aggregates facilitated by p62 were not directly toxic to cells under the conditions in this study. Deletion of the ubiquitin-association (UBA) domain of p62 significantly decreased the p62-facilitated aggregate formation, but did not completely inhibit it. Further protein interaction experiments also showed that the truncated p62 with the UBA domain deletion remained capable of interacting with mutant SOD1. The findings of this study show that p62 plays a critical role in forming protein aggregates in familial ALS, likely by linking misfolded mutant SOD1 molecules and other cellular proteins together.  相似文献   

12.
In this article, we describe a fast and specific method to measure 5FU with HPLC tandem-mass spectrometry. Reversed-phase HPLC was combined with electrospray ionization tandem mass spectrometry and detection was performed by multiple-reaction monitoring. Stable-isotope-labeled 5FU (1,3–15N2–5FU) was used as an internal standard. 5FU was measured within a single analytical run of 16 min with a lower limit of detection of 0.05 μM. The intra-assay variation and inter-assay variation of plasma with added 5FU (1 μM, 10 μM, 100 μM) was less then 6%. Recoveries of the added 5FU in plasma were > 97%. Analysis of the 5FU levels in plasma samples from patients with the HPLC tandem mass spectrometry method and a HPLC-UV method yielded comparable results (r2 = 0.98). Thus, HPLC with electrospray ionization tandem mass spectrometry allows the rapid analysis of 5FU levels in plasma and could, therefore, be used for therapeutic drug monitoring.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease characterized by the loss of neuronal function in the motor cortex, brain stem, and spinal cord. Familial ALS cases, accounting for 10-15% of all ALS disease, are caused by a gain-of-function mutation in Cu,Zn-superoxide dismutase (SOD1). Two hypotheses have been proposed to explain the toxic gain of function of mutant SOD (mSOD). One is that mSOD can directly promote reactive oxygen species and reactive nitrogen species generation, whereas the other hypothesis suggests that mSODs are prone to aggregation due to instability or association with other proteins. However, the hypotheses of oxidative stress and protein aggregation are not mutually exclusive. G93A-SOD1 transgenic mice show significantly increased protein carbonyl levels in their spinal cord from 2 to 4 months and eventually develop ALS-like motor neuron disease and die within 5-6 months. Here, we used a parallel proteomics approach to investigate the effect of the G93A-SOD1 mutation on protein oxidation in the spinal cord of G93A-SOD1 transgenic mice. Four proteins in the spinal cord of G93A-SOD1 transgenic mice have higher specific carbonyl levels compared to those of non-transgenic mice. These proteins are SOD1, translationally controlled tumor protein (TCTP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and, possibly, alphaB-crystallin. Because oxidative modification can lead to structural alteration and activity decline, our current study suggests that oxidative modification of UCH-L1, TCTP, SOD1, and possibly alphaB-crystallin may play an important role in the neurodegeneration of ALS.  相似文献   

14.
In our laboratory, we have developed (1) an in vitro model of sporadic Amyotrophic Lateral Sclerosis (sALS) involving exposure of motor neurons to cerebrospinal fluid (CSF) from sALS patients and (2) an in vivo model involving intrathecal injection of sALS-CSF into rat pups. In the current study, we observed that spinal cord extract from the in vivo sALS model displayed elevated reactive oxygen species (ROS) and mitochondrial dysfunction. Quantitative proteomic analysis of sub-cellular fractions from spinal cord of the in vivo sALS model revealed down-regulation of 35 mitochondrial proteins and 4 lysosomal proteins. Many of the down-regulated mitochondrial proteins contribute to alterations in respiratory chain complexes and organellar morphology. Down-regulated lysosomal proteins Hexosaminidase, Sialidase and Aryl sulfatase also displayed lowered enzyme activity, thus validating the mass spectrometry data. Proteomic analysis and validation by western blot indicated that sALS-CSF induced the over-expression of the pro-apoptotic mitochondrial protein BNIP3L. In the in vitro model, sALS-CSF induced neurotoxicity and elevated ROS, while it lowered the mitochondrial membrane potential in rat spinal cord mitochondria in the in vivo model. Ultra structural alterations were evident in mitochondria of cultured motor neurons exposed to ALS-CSF. These observations indicate the first line evidence that sALS-CSF mediated mitochondrial and lysosomal defects collectively contribute to the pathogenesis underlying sALS.  相似文献   

15.
1. In nonanesthetized rabbits temporal occlusion of the abdominal aorta was used to induce oxidative stress in the lower part of the body including distal segments of the spinal cord.2. Spinal cord samples were taken from the animals exposed to 25-min aortic occlusion (AO ) or to occlusion followed by 1- or 2-hr reperfusion (AO/R1 or AO/R2, respectively) or from sham-operated animals (C). The presence of free radicals (FR) in the spinal cord samples frozen in liquid N2 was assessed by ESR spectroscopy without spin trapping. Moreover, superoxide dismutase (SOD) activity and conjugated diene (CD) levels were measured in the samples.3. In the AO group FR were detected in the spinal cord regions close to the occlusion (lower thoracic and distal segments) along with a decrease in SOD activity. The calculated g value (g = 2.0291) indicated that the paramagnetic signal recorded might be attributed to superoxide radicals. FR were absent in the AO/R1 group. Concurrently, the SOD activity revealed a significant tendency to return to the control level. FR appeared again in the AO/R2 group, mostly in the upper and middle lumbar regions, along with a decrease in SOD activity. No sample from the C group revealed FR. A significant increase in CD levels was observed in the thoracolumbar region only in the AO/R2 group. The temporary absence of FR in the AO/R1 group suggests activation of defense antioxidant mechanisms (e.g., specific enzymatic systems such as SOD), which might have been exhausted later.4. Changes in SOD activity similar to those observed in the thoracolumbar region, though less noticeable, occurred in the obviously noncompromised tissue (upper cervical region). This points to a kind of generalized reponse of the animal to aortic occlusion.5. Direct ESR spectroscopy revealed the presence of FR as well as their time course in the spinal cord during the early phase of ischemia/reperfusion injury and the inverse relationship between FR and SOD activity.  相似文献   

16.
Heat shock proteins (HSPs) are attractive therapeutic targets for neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), characterized by aberrant formation of protein aggregates. Although motor neurons have a high threshold for activation of HSP genes, HSP90 inhibitors are effective inducers. This study evaluated NXD30001, a novel, small molecule HSP90 inhibitor based on the radicicol backbone, for its ability to induce neuronal HSPs and for efficacy in an experimental model of ALS based on mutations in superoxide-dismutase 1 (SOD1). In motor neurons of dissociated murine spinal cord cultures, NXD30001-induced expression of HSP70/HSPA1 (iHSP70) and its co-chaperone HSP40/DNAJ through activation of HSF1 and exhibited a protective profile against SOD1G93A similar to geldanamycin, but with less toxicity. Treatment prevented protein aggregation, mitochondrial fragmentation, and motor neuron death, important features of mutant SOD1 toxicity, but did not effectively prevent aberrant intracellular Ca2+ accumulation. NXD30001 distributed to brain and spinal cord of wild-type and SOD1G93A transgenic mice following intraperitoneal injection; however, unlike in culture, in vivo levels of SOD1 were not reduced. NXD30001-induced expression of iHSP70 in skeletal and cardiac muscle and, to a lesser extent, in kidney, but not in liver, spinal cord, or brain, with either single or repeated administration. NXD30001 is a very useful experimental tool in culture, but these data point to the complex nature of HSP gene regulation in vivo and the necessity for early evaluation of the efficacy of novel HSP inducers in target tissues in vivo.  相似文献   

17.
A simple, sensitive spectrophotometric assay system for superoxide dismutase (SOD) has been developed. This assay is based on the inhibitory effects of SOD on the initial rate of 6-hydroxydopamine autoxidation. The inhibition of 6-hydroxydopamine autoxidation was virtually linear to an SOD concentration of approximately 100 ng of SOD/ml (about a 50% inhibition at 100 ng/ml; there was a greater inhibition at higher SOD concentrations). With this assay system it was determined that SOD levels in rat brain, liver, and spinal cord were 84, 660, and 56 μg of SOD/g of tissue, respectively. These results agree very well with results obtained by other assays.  相似文献   

18.
Determining the composition of aggregated superoxide dismutase 1 (SOD1) species associated with amyotrophic lateral sclerosis (ALS), especially with respect to co-aggregated proteins and post-translational modifications, could identify cellular or biochemical factors involved in the formation of these aggregates and explain their apparent neurotoxicity. The results of mass spectrometric and shotgun-proteomic analyses of SOD1-containing aggregates isolated from spinal cords of symptomatic transgenic ALS mice using two different isolation strategies are presented, including 1) resistance to detergent extraction and 2) size exclusion-coupled anti-SOD1 immunoaffinity chromatography. Forty-eight spinal cords from three different ALS-SOD1 mutant mice were analyzed, namely G93A, G37R, and the unnatural double mutant H46R/H48Q. The analysis consistently revealed that the most abundant proteins recovered from aggregate species were full-length unmodified SOD1 polypeptides. Although aggregates from some spinal cord samples contained trace levels of highly abundant proteins, such as vimentin and neurofilament-3, no proteins were consistently found to co-purify with mutant SOD1 in stoichiometric quantities. The results demonstrate that the principal protein in the high molecular mass aggregates whose appearance correlates with symptoms of the disease is the unmodified, full-length SOD1 polypeptide.  相似文献   

19.
该文主要分析音猬因子(Sonic Hedgehog,Shh)在鸡胚发育过程中对脊髓形态结构的形成和相关蛋白表达的影响。实验过程采用鸡胚带壳开窗培养技术,待胚胎发育至第3 d,将2μg/μL pCAGGS-Shh和0.25μg/μL pCAGGS-GFP质粒以1:8浓度混合,将0.1~0.5μL混合液准确地注射到神经管,在电压18 V、每次脉冲60 ms、间隔100 ms、电脉冲6次的条件下进行定时定位活体电转基因,电转后6 h开始到5 d分别收集胚胎,冰冻切片,采用荧光免疫组化和DAPI染色观察组织形态结构及相关蛋白的变化。结果表明,电转后6 h便可以观察到GFP的表达,24 h时Shh在脊髓中的异位表达能够诱导转录因子Nkx2.2(NK2 homeobox 2)的表达,并且能够抑制Pax7(paired-type homeobox 7)的表达,而Shh异位表达时脊髓的结构发生了明显的改变;说明Shh作为脊髓发育过程重要的信号分子,其异位表达能够诱导和抑制相关蛋白的表达,影响脊髓正常发育。  相似文献   

20.
With a highly sensitive electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) system, proteins were identified in minimal amounts of spinal cord from patients with the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and compared to proteins in spinal cord from control subjects. The results show 18 versus 16 significantly identified (p < 0.05) proteins, respectively, all known to be found in the central nervous system. The most abundant protein in both groups was the glial fibrillary acidic protein, GFAP. Other proteins were, for example, hemoglobin alpha- and beta chain, myelin basic protein, thioredoxin, alpha enolase, and choline acetyltransferase. This study also includes the technique of laser microdissection in combination with pressure catapulting (LMPC) for the dissection of samples and specific neurons. Furthermore, complementary experiments with nanoLC-matrix assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS) confirmed the results of the ESI-FTICR MS screening and provided additional results of further identified proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号