首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New derivatives of 1,4-dideoxy-1,4-imino-d-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-d-ribitol (13, IC50 ∼2 μM) and its C18-analogues (IC50 <10 μM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC50 ∼8 μM) growth of JURKAT cells.  相似文献   

2.
In the current study, forty-four new [3-(2/3/4-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl carbamate derivatives were synthesized and evaluated for their ability to inhibit electric eel acetylcholinesterase (EeAChE) and equine butyrylcholinesterase (eqBuChE) enzymes. According to the inhibitory activity results, [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl heptylcarbamate (16c, eqBuChE, IC50 = 12.8 μM; EeAChE, no inhibition at 100 μM) was the most potent eqBuChE inhibitor among the synthesized compounds and was found to be a moderate inhibitor compared to donepezil (eqBuChE, IC50 = 3.25 μM; EeAChE, IC50 = 0.11 μM). Kinetic and molecular docking studies indicated that compounds 16c and 14c (hexylcarbamate derivative, eqBuChE, IC50 = 35 μM; EeAChE, no inhibition at 100 μM) were mixed-type inhibitors which accommodated within the catalytic active site (CAS) and peripheral anionic site (PAS) of hBuChE through stable hydrogen bonding and π-π stacking. Furthermore, it was determined that [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl (4-methylphenyl)carbamate 7c (eqBuChE, IC50 = 34.5 μM; EeAChE, 38.9% inhibition at 100 μM) was the most active derivative against EeAChE and a competitive inhibitor binding to the CAS of hBuChE. As a result, 6-(2-methoxyphenyl)pyridazin-3(2H)-one scaffold is important for the inhibitory activity and compounds 7c, 14c and 16c might be considered as promising lead candidates for the design and development of selective BuChE inhibitors for Alzheimer’s disease treatment.  相似文献   

3.
4.
Sunflower (Helianthus annuus L.) seeds were germinated and grown in the presence of 50, 100 and 200 μM CdCl2. The lower concentration (50 μM) of Cd2 ions produced slight decrease in reduced glutathione (GSH) content and overall increase (except superoxide dismutase) in antioxidant enzyme activities, and in H2O2 concentration. Chlorophyll content, lipid peroxidation and protein oxidation were not affected under 50 μM CdCl2. GSH content was diminished under 100 and 200 μM CdCl2, and except for superoxide dismutase, which activity remained unaltered, overall decreases in the antioxidant enzyme activities (catalase, ascorbate peroxidase, dehydroascorbate peroxidase, glutathione reductase) and in guaiacol peroxidase were observed. These Cd2 concentrations caused a decrease in chlorophyll content as well as an increase in lipid peroxidation, protein oxidation and H2O2 concentration. All the observed effects were more evident with the highest concentration of cadmium chloride used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
A novel series of tacrine based cyclopentapyranopyridine- and tetrahydropyranoquinoline-kojic acid derivatives were designed, synthesized, and evaluated as anti-cholinesterase agents. The chemical structures of all target compounds were characterized by 1H-NMR, 13C-NMR, and elemental analyses. The synthesized compounds mostly inhibited acetylcholinesterase enzyme (AChE) with IC50 values of 4.18–48.71 μM rather than butyrylcholinesterase enzyme (BChE) with IC50 values of >100 μM. Among them, cyclopentapyranopyridine-kojic acid derivatives showed slightly better AChE inhibitory activity compared to tetrahydropyranoquinoline-kojic acid. The compound 10-amino-2-(hydroxymethyl)-11-(4-isopropylphenyl)-7,8,9,11-tetrahydro-4H-cyclopenta[b]pyrano[2′,3′ : 5,6]pyrano[3,2-e]pyridin-4-one ( 6f ) bearing 4-isopropylphenyl moiety and cyclopentane ring exhibited the highest anti-AChE activity with IC50 value of 4.18 μM. The kinetic study indicated that the compound 6f acts as a mixed inhibitor and the molecular docking studies also illustrated that the compound 6f binds to both the catalytic site (CS) and peripheral anionic site (PAS) of AChE. The compound 6f showed moderate neuroprotective properties against H2O2-induced cytotoxicity in PC12 cells. The theoretical ADME study also predicted good drug-likeness for the compound 6f . Based on these results, the compound 6f seems to be a very promising AChE inhibitor for the treatment of Alzheimer's disease.  相似文献   

6.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance.  相似文献   

7.
Farnesyl pyrophosphate (FPP) is a common substrate for a variety of prenyltransferases for synthesizing isoprenoid compounds. In this study, (2E,6E)-8-O-(N-methyl-2-aminobenzoyl)-3,7-dimethyl-2,6-octandien-1-pyrophosphate (MANT-O-GPP), a fluorescent analog of FPP, was synthesized and demonstrated as a satisfactory substrate for Escherichia coli undecaprenyl pyrophosphate synthase (UPPS) with a Km of 1.5 μM and a kcat of 1.2 s−1 based on [14C]IPP consumption. Interesting, we found that its emission fluorescence intensity at 420 nm increased remarkably during chain elongation, thereby useful for real-time monitoring kinetics of UPPS to yield a Km of 1.1 μM and a kcat of 1.0 s−1, consistent with those measured using radiolabeled substrate. Using this assay, the IC50 of a known UPPS inhibitor farnesyl thiopyrophosphate (FsPP) was confirmed. Our studies provide a convenient and environmentally friendly alternative for kinetics and inhibition studies on UPPS drug target.  相似文献   

8.
A series of hybrids containing the pharmacophores of the histone deacetylase (HDAC) inhibitor, SAHA, and the antioxidant ebselen were designed and synthesized as multi-target-directed ligands against Alzheimer’s disease. An in vitro assay indicated that some of these molecules exhibit potent HDAC inhibitory activity and ebselen-related pharmacological effects. Specifically, the optimal compound 7f was found to be a potent HDAC inhibitor (IC50?=?0.037?μM), possessing rapid hydrogen peroxide scavenging activity and glutathione peroxidase-like activity (ν0?=?150.0?μM?min?1) and good free oxygen radical absorbance capacity (value of ORAC: 2.2). Furthermore, compound 7f showed significant protective effects against damage induced by H2O2 and the ability to prevent ROS accumulation in PC12 cells.  相似文献   

9.
In the current study, we designed and synthesised a novel series of 2-(2,6-dioxopiperidin-3-yl)isoquinoline-1,3(2H,4H)-dione derivatives as cereblon (CRBN) modulators. The results of the CCK8 assay revealed potent antiproliferative activity for the selected compound 10a against NCI-H929 (IC50=2.25 µM) and U239 (IC50=5.86 µM) cell lines. Compound 10a also can inhibit the TNF-α level (IC50=0.76 µM) in LPS stimulated PMBC and showed nearly no toxicity to this normal human cell line. The TR-FRET assay showed compound 10a having potent inhibitory activity against CRBN (IC50=4.83 µM), and the docking study confirmed a nice fitting of 10a into the active sites of CRBN. Further biology studies revealed compound 10a can increase the apoptotic events, arrest the NCI-H929 cells at G0/G1 cell cycle, and induce the ubiquitination degradation of IKZF1 and IKZF3 proteins by CRL4CRBN. These preliminary results suggested that compound 10a could serve as a potential antitumor drug and worthy of further investigation.  相似文献   

10.
To elucidate the physiological mechanism of chilling stress mitigated by cinnamic acid (CA) pretreatment, a cucumber variety (Cucumis sativus cv. Jinchun no. 4) was pretreated with 50 μM CA for 2 d and was then cultivated at two temperatures (15/8 and 25/18 °C) for 1 d. We investigated whether exogenous CA could protect cucumber plantlets from chilling stress (15/8 °C) and examined whether the protective effect was associated with the regulation of antioxidant enzymes and lipid peroxidation. At 2 d, exogenous CA did not influence plant growth, but induced the activities of some antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione peroxidase (GSH-Px, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) in cucumber leaves, and it also elevated the contents of reduced glutathione (GSH) and ascorbate (AsA). When CA was rinsed and the CA-pretreated seedlings were exposed to different temperatures, the antioxidant activities in leaves at 3 d had undergone additional change. Chilling increased the activities of CAT, GSH-PX, APX, GSH and AsA in leaves, but the combination of CA pretreatment and chilling enhanced the antioxidant activities even more. Moreover, chilling inhibited plant growth and increased the contents of malonaldehyde (MDA), superoxide radical (O2) and hydrogen peroxide (H2O2) in cucumber leaves, and the stress resulted in 87.5% of the second leaves being withered. When CA pretreatment was combined with the chilling stress, we observed alleviated growth inhibition and decreased contents of MDA, H2O2 and O2 in comparison to non-pretreated stressed plants, and found that the withered leaves occurred at a rate of 25.0%. We propose that CA pretreatment increases antioxidant enzyme activities in chilling-stressed leaves and decreases lipid peroxidation to some extent, enhancing the tolerance of cucumber leaves to chilling stress.  相似文献   

11.
A mild and efficient route to tetraketones (2–22) has been developed by way of tetraethyl ammonium bromide (Et4N+Br? ) mediated condensation of dimedone (5,5-dimethylcyclohexane-1,3-dione, 1) with a variety of aldehydes. All these compounds showed significant lipoxygenase inhibitory activity and moderate to strong antioxidant potential. Compounds 19 (IC50 = 7.8 μM), 22 (IC50 = 12.5 μM), 3 (IC50 = 16.3 μM), 11 (IC50 = 17.5 μM) and 8 (IC50 = 21.3 μM) showed significant inhibitory potential against lipoxygenase (baicalein, IC50 = 22.4 μM). On the other hand compound 19 (IC50 = 33.6 μM) also showed strong antioxidant activity compared to the standard (IC50 = 44.7 μM). This study is likely to lead to the discovery of therapeutically efficient agents against very important disorders including inflammation, asthma, cancer and autoimmune diseases.  相似文献   

12.
The role in the heart of the cardiac isoform of the cystic fibrosis transmembrane conductance regulator (CFTR), which underlies a protein kinase A-dependent Cl current (ICl.PKA) in cardiomyocytes, remains unclear. The identification of a CFTR-selective inhibitor would provide an important tool for the investigation of the contribution of CFTR to cardiac electrophysiology. GlyH-101 is a glycine hydrazide that has recently been shown to block CFTR channels but its effects on cardiomyocytes are unknown. Here the action of GlyH-101 on cardiac ICl.PKA and on other ion currents has been established. Whole-cell patch-clamp recordings were made from rabbit isolated ventricular myocytes. GlyH-101 blocked ICl.PKA in a concentration- and voltage-dependent fashion (IC50 at +100 mV = 0.3 ± 1.5 μM and at −100 mV = 5.1 ± 1.3 μM). Woodhull analysis suggested that GlyH-101 blocks the open pore of cardiac CFTR channels at an electrical distance of 0.15 ± 0.03 from the external membrane surface. A concentration of GlyH-101 maximally effective against ICl.PKA (30 μM) was tested on other cardiac ion currents. Inward current at −120 mV, comprised predominantly of the inward-rectifier background K+ current, IK1, was reduced by ∼43% (n = 5). Under selective recording conditions, the Na+ current (INa) was markedly inhibited by GlyH-101 over the entire voltage range (with a fractional block at −40 mV of ∼82%; n = 8). GlyH-101 also produced a voltage-dependent inhibition of L-type Ca2+ channel current (ICa,L); fractional block at +10 mV of ∼49% and of ∼28% at −10 mV; n = 11, with a ∼−3 mV shift in the voltage-dependence of ICa,L activation. Thus, this study demonstrates for the first time that GlyH-101 blocks cardiac ICl.PKA channels in a similar fashion to that reported for recombinant CFTR. However, inhibition of other cardiac conductances may limit its use as a CFTR-selective blocker in the heart.  相似文献   

13.
In the present study, we investigated the relationship between early life protein malnutrition‐induced redox imbalance, and reduced glucose‐stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal‐protein‐diet (17%‐protein, NP) or to a low‐protein‐diet (6%‐protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H2O2), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn‐superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre‐incubated with H2O2 and/or N‐acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H2O2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre‐incubated with H2O2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N‐acetylcysteine.  相似文献   

14.
Two new MnIII complexes Na[Mn(5-SO3-salpnOH)(H2O)] ⋅ 5H2O (1) and Na[Mn(5-SO3-salpn)(MeOH)] ⋅ 4H2O (2) (5-SO3-salpnOH = 1,3-bis(5-sulphonatosalicylidenamino)propan-2-ol, 5-SO3-salpn = 1,3-bis(5-sulphonatosalicylidenamino)propane) have been prepared and characterized. Electrospray ionization-mass spectrometry, UV-visible and 1H NMR spectroscopic studies showed that the two complexes exist in solution as monoanions [Mn(5-SO3-salpn(OH))(solvent)2], with the ligand bound to MnIII through the two phenolato-O and two imino-N atoms located in the equatorial plane. The E1/2 of the MnIII/MnII couple (−47.11 (1) and −77.80 mV (2) vs. Ag/AgCl) allows these complexes to efficiently catalyze the dismutation of , with catalytic rate constants 2.4 × 106 (1) and 3.6 × 106 (2) M−1 s−1, and IC50 values of 1.14 (1) and 0.77 (2) μM, obtained through the nitro blue tetrazolium photoreduction inhibition superoxide dismutase assay, in aqueous solution of pH 7.8. The two complexes are also able to disproportionate up to 250 equivalents of H2O2 in aqueous solution of pH 8.0, with initial turnover rates of 178 (1) and 25.2 (2) mM H2O2 min−1 mM−1 catalyst−1. Their dual superoxide dismutase/catalase activity renders these compounds particularly attractive as catalytic antioxidants.  相似文献   

15.
This study was conducted to investigate how the activity and expression of certain paramount antioxidant enzymes respond to grape seed extract (GSE) addition in primary muscle cells of goats. Gluteal primary muscle cells (PMCs) isolated from a 3-week old goat were cultivated as an unstressed cell model, or they were exposed to 100 µM H2O2 to establish a H2O2-stimulated cell model. The activities of catalase (CAT), superoxide dismutases (SOD) and glutathione peroxidases (GPx) in combination with other relevant antioxidant indexes [i.e., reduced glutathione (GSH) and total antioxidant capacity (TAOC)] in response to GSE addition were tested in the unstressed and H2O2-stimulated cell models, and the relative mRNA levels of the CAT, GuZu-SOD, and GPx-1 genes were measured by qPCR. In unstressed PMCs, GSE addition at the dose of 10 µg/ml strikingly attenuated the expression levels of CAT and CuZn-SOD as well as the corresponding enzyme activities. By contrast, in cells pretreated with 100 µM H2O2, the expression and activity levels of these two antioxidant enzymes were enhanced by GSE addition at 10 µg/ml. GSE addition promoted GPx activity in both unstressed and stressed PMCs, while the expression of the GPx 1 gene displayed partial divergence with GPx activity, which was mitigated by GSE addition at 10 µg/ml in unstressed PMCs. GSH remained comparatively stable except for GSE addition to H2O2-stimulated PMCs at 60 µg/ml, in which a dramatic depletion of GSH occurred. Moreover, GSE addition enhanced TAOC in unstressed (but not H2O2-stimulated) PMCs. GSE addition exerted a bidirectional modulating effect on the mRNA levels and activities of CAT and SOD in unstressed and stressed PMCs at a moderate dose, and it only exhibited a unidirectional effect on the promotion of GPx activity, reflecting its potential to improve antioxidant protection in ruminants.  相似文献   

16.
A new class of 2(1H)-pyrimidinone derivatives was identified as potential EGFR T790M inhibitors against TKI-resistant NSCLC. These novel compounds inhibited the EGFR T790M kinase activity at concentrations in the range of 85.3 to 519.9 nM. In particular, compound 7e exhibited the strongest activity against both EGFRWT (IC50 = 96.9 nM) and EGFRT790M (IC50 = 85.3 nM) kinases in the cells. Compared with inhibitor 7e, compound 7b displayed enhanced antiproliferative activity against gefitinib-resistant H1975 cells harboring the EGFR T790M mutation. In addition, compound 7b also has low toxicity against the normal human liver cells LO2, with an IC50 of 11.1 µM. Moreover, both the AO/EB and DAPI staining assays also demonstrated the inhibitory efficacy of 7b against the resistant H1975 cells. This contribution provides a new scaffold 2(1H)-pyrimidinone as potential EGFR T790M inhibitor against drug-resistant NSCLC.  相似文献   

17.
Podocytes are an important constituent of the glomerular filtration barrier. The function of these glomerular cells is affected by extracellular nucleotides through P2 receptors. The activation of P2 receptors may lead to the activation of NAD(P)H oxidase, the key enzyme in oxidative stress, with the intracellular pathways leading to intracellular ATP depletion associated with an increase in the intracellular AMP:ATP ratio. This deregulation of the energy balance activates AMP-activated protein kinase (AMPK) to restore energy homeostasis. We investigated whether P2 receptor activation influences NAD(P)H oxidase-dependent rate of superoxide anion (O2•−) generation and AMPK activity in cultured mouse podocytes. The rate of O2•− generation was measured by chemiluminescence and changes in AMPK activity were determined by immunoblotting against AMPKα-Thr172-P. The addition of 100 μM ATP induced a rapid and transient decrease in rate of O2•− generation and increased AMPK phosphorylation with maximal effects in the first minute (2.44 ± 0.09 versus 1.62 ± 0.06 nmol/mg protein/min, P < 0.05 and 0.64 ± 0.04 versus 0.97 ± 0.07, P < 0.05, respectively). Both parameters returned to control levels at 10 min. Suramin (300 μM, P2 receptor antagonist) and compound C (100 μM, AMPK inhibitor) completely, and STO-609 (25 μM, CaMKK-β inhibitor) partially, prevented ATP action in rate of O2•− generation and AMPK phosphorylation. Various ATP analogues (10 μM) mimicked the effects of ATP on rate of O2•− generation and AMPK phosphorylation. The data indicate that extracellular ATP, acting through P2 receptors upstream of CaMKK-β, modulates podocyte function through simultaneous effects on AMPK and NAD(P)H oxidase activities. This mechanism may play a role in restoring energy homeostasis after oxidative stress.  相似文献   

18.
Using a superoxide (O2 ?) generation assay system with differentiated HL-60 cells, 1,2-di-O-α-linolenoyl-3-O-β-galactosyl-sn-glycerol (DLGG) was identified as an O2 ? generation inhibitor from Perilla frutescens var. crispa (a local variety, kida-chirimen shiso). DLGG suppressed the O2 ? level in a dose-dependent manner with an IC50 value of 21 μM, comparable to those of rosmarinic acid (RoA, IC50=29 μM) and caffeic acid (CA, IC50=30 μM). While RoA and CA also dose-dependently inhibited O2 ? generation in a xanthine-xanthine oxidase system, DLGG had no effect in the same system. Thus DLGG appeared to decrease the O2 ? level in the HL-60 assay system by mechanisms different from those of RoA and CA, which appeared to act as O2 ? scavengers.  相似文献   

19.
Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 μM), GST P1-1 by sulphinpyrazone (IC50 = 66 μM), GST A1-1 by sulphasalazine, and camptothecin (34 and 74 μM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 μM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 μM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein.  相似文献   

20.
The present in vitro study was designed to examine the antioxidative activity of red cabbage anthocyanins (ATH) in the protection of blood plasma proteins and lipids against damage induced by oxidative stress. Fresh leaves of red cabbage were extracted with a mixture of methanol/distilled water/0.01% HCl (MeOH/H2O/HCl, 50/50/1, v/v/w). Total ATH concentration [μM] was determined with cyanidin 3-glucoside as a standard. Phenolic profiles in the crude red cabbage extract were determined using the HPLC method. Plasma samples were exposed to 100 μM peroxynitrite (ONOO) or 2 mM hydrogen peroxide (H2O2) in the presence/absence of ATH extract (5–15 μM); oxidative alterations were then assessed. Pre-incubation of plasma with ATH extract partly reduced oxidative stress in plasma proteins and lipids. Dose-dependent reduction of both ONOO and H2O2-mediated plasma protein carbonylation was observed. ATH extract partly inhibited the nitrative action of ONOO, and significantly decreased plasma lipid peroxidation caused by ONOO or H2O2. Our results demonstrate that anthocyanins present in red cabbage have inhibitory effects on ONOO and H2O2-induced oxidative stress in blood plasma components. We suggest that red cabbage ATH, as dietary antioxidants, should be considered as potentially usable nutraceuticals in the prevention of oxidative stress-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号