首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Urinary peptides were roughly fractionated by combined columns of cation and anion exchange resins, and the peptides eluted from each column were further fractionated by a combination of various ion exchange resins and DEAE-cellulose column chromatography, paper chromatography and other methods. From the fractions adsorbed on cation exchange resin, 13 homogeneous peptides could be isolated, and from the ones adsorbed on anion exchange resin, 8 glycopeptides could be found. Their amino acid compositions were analyzed.

Although some fractions remain univestigated, an outline of the whole aspect of main urinary peptides has been clarified by this study.  相似文献   

2.
Bovine hemoglobin (bHb) was purified from bovine red blood cells (bRBCs) via anion exchange chromatography preceded by dialysis. This is a fast and effective way to obtain bHb from bRBCs using Q Sepharose XL, a strong anion exchange resin. This resin had double the binding capacity for bHb compared to three other anion exchange resins that were studied in this work. Methemoglobin levels remained below 2% with bHb concentrations between 0.7 and 1.7 mM. The high purity of bHb was confirmed via SDS-PAGE and size exclusion chromatography (SEC).  相似文献   

3.
It has long been debated whether binder IB represents a unique form of the glucocorticoid receptor or is derived from the larger molecular weight form, binder II, by limited proteolysis. Transformed glucocorticoid receptors in kidney, liver and mixed kidney/liver cytosols were examined using anion exchange and gel filtration chromatography. The transformed receptor in liver cytosols chromatographs as binder II on DEAE-Sephadex A-50 anion exchange columns and has a Stokes radius of approx 6.0 nm. The transformed receptor in kidney cytosols chromatographs as binder IB on DEAE-Sephadex A-50 anion exchange columns and has a Stokes radius of 3.0-4.0 nm (3.2 nm on agarose; 3.0-4.0 nm on Sephadex G-100). Using cytosols prepared from mixed homogenates (2 g kidney plus 8 g liver tissue), our experiments show that binder II is converted to a lower molecular weight form (Rs = 3.2 nm on agarose; Rx = 3.9 nm on Sephadex G-100) that is identical to binder IB in its elution position from DEAE-Sephadex anion exchange resin. Identical results are obtained using kidney/liver/cytosols mixed in vitro in which only the hepatic receptor, binder II, is labelled with [3H]TA. These results support the hypothesis that the renal receptor, binder IB, is a proteolytic fragment of binder II and does not represent a polymorphic form of the glucocorticoid receptor. The renal converting activity is dependent on free-SH for full activity but is insensitive to the protease inhibitors leupeptin, antipain, and PMSF. The conversion of hepatic binder II to binder IB in in vitro mixing experiments can be prevented if kidney cytosol is gel filtered on Sephadex G-25 and the eluted macromolecular fraction is adjusted to 10 mM EGTA (or EDTA) prior to mixing with the [3H]TA labelled hepatic cytosol.  相似文献   

4.
High throughput screening (HTS) of chromatography resins can accelerate downstream process development by rapidly providing information on product and impurity partitioning over a wide range of experimental conditions. In addition to the removal of typical product and process‐related impurities, chromatography steps are also used to remove potential adventitious viral contaminants and non‐infectious retrovirus‐like particles expressed by rodent cell lines used for production. This article evaluates the feasibility of using HTS in a 96‐well batch‐binding format to study removal of the model retrovirus xenotropic murine leukemia virus (xMuLV) from product streams. Two resins were examined: the anion exchange resin Q Sepharose Fast Flow? (QSFF) and Capto adhere?, a mixed mode resin. QSFF batch‐binding HTS data was generated using two mAbs at various pHs, NaCl concentrations, and levels of impurities. Comparison of HTS data to that generated using the column format showed good agreement with respect to virus retentation at different pHs, NaCl concentrations and impurity levels. Results indicate that NaCl concentration and impurity level, but not pH, are key parameters that can impact xMuLV binding to both resins. Binding of xMuLV to Capto adhere appeared to tolerate higher levels of NaCl and impurity than QSFF, and showed some product‐specific impact on binding that was not observed with QSFF. Overall, the results demonstrate that the 96‐well batch‐binding HTS technique can be an effective tool for rapidly defining conditions for robust virus clearance on chromatographic resins. Biotechnol. Bioeng. 2013; 110: 1984–1994. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4′-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25°C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 ± 0.11) × 10-10 moles · min-1 · cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 ± 14 mM and for the modifier site KS' = 653 ± 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25°C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n ? 1), indicating a single site of inhibition for the two probes. The kinetics of sul- fate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate trans- port site was the target for the action of the inhibitors. The in- hibitory constants (Ki j for the transport sites were 0.45 ± 0.10 PM for DNDS and 0.21 ± 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus oper- andi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion trans- port sites are also the sites of inhibition and of labeling of co- valent binding analogs of BS and DS.  相似文献   

6.
The immobilization of glucose isomerase (D-xylose ketol isomerase, EC 5.3.1.5) by covalently bonding to various carriers and by adsorption to ion exchange resins was attempted in order to obtain a stable immobilized enzyme which can be used for continuous isomerization of glucose in a column. Of the covalent bonding methods, the colloidal silica-glutaraldehyde method showed the highest binding capacity and gave the most stable immobilized glucose isomerase. The Ludox HS-30 bound glucose isomerase column showed a half-life of 24 days and an enzyme usage of 0.07 units per gram of isomerized sugar (d.s, fructose 45%). Of the resins used, the macromolecular type or porous type strongly basic anion exchange resins showed the highest binding capacity and gave the most stable immobilized glucose isomerase. The Amberlite IRA-904 resine-bound glucose isomerase showed a half-life of 23 days and an enzyme usage of 0.06 units per gram of isomerized sugar (d.s., fructose 45%). Based on the ease of the immobilization process, the possibility of carrier reuse and the extensive use already achieved by ion exchange resins in the sugar industry, IRA-904 resin was selected as the candidate for commercialization.  相似文献   

7.
Tartrate-resistant acid phosphatase (TR-AcPh) from the ameba Amoeba proteus is represented by 3 bands (electromorphs) revealed after disk-electrophoresis in PAAG, using 2-naphthylphosphate as substrate. The presence of 50 mmol/l MgCl2 or CaCl2 in the incubation mixture increases activities of all electromorphs of TR-AcPh, while of ZnCl2, of two of them. The activity of the TR-AcPh electromorphs also rose after the 30-min incubation of the gels in MgCl2, CaCl2 or ZnCl2 (10 and 100 mM) before gel staining. However, 1 M ZnCl2, unlike 1 M CaCl2 or 1 M MgCl2, partly inactivated two out of three TR-AcPh electromorphs. The TR-AcPh electromorphs were inhibited by 1,10-phenanthroline (1,10-Ph), EDTA, and EGTA (all at a concentration of 5 mM) faster than by H2O2 (10 mM). The inactivation of the TR-AcPh electromorphs by the chelating agents did not depend (EGTA) or nearly did not depend (EDTA, 1,10-Ph) on their concentration (0.05, 0.5, and 5 mM). Out of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+, and Zn2+), only Zn ions reactivated the TR-AcPh electromorphs inactivated by 1,10-Ph, EDTA or EGTA. The TR-AcPh electromorphs were reactivated worse after inactivation by EGTA than by EDTA or 1,10-Ph. It is suggested that the active site of TR-AcPh contains the zinc ion essential for catalytic activity of this enzyme, i.e., TR-AcPh of A. proteus is a metallophosphatase performing the phosphomonoesterase activity in acidic medium.  相似文献   

8.
An anion exchange method for lactic acid recovered from lactic acid-glucose solution in an ion-exchange membrane-based extractive fermentation system was examined. The exchange isotherms of anion exchange resins for lactic acid recovered were measured batchwise, and the exchange-desorption kinetics of lactic acid passing through the exchange column was investigated. The determined typical breakthrough and elution curves were measured and simulated by conventional mode. The mass transfer coefficients were identified by numberical method. The effects of the velocity of the fluid on the dynamics were studied. Aqueous NaOH solution was found to be the best solvent for elution. An experiment on anioun exchange from clarified lactic acid fermentation broth was carried out to obtain knowledge of the performance of the ion exchange system from a borth. The ion-exchange mass-transfer coefficient and efficiency from the fermentation broth is found to be lower when compared with aqueous solutions of pure lactic acid. The results show that the separation method with anion exchange resins may be used in the production of lactic acid by fermentation.(c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4'-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25 degrees C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 +/- 0.11) X 10(-10) moles . min-1 . cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 +/- 14 mM and for the modifier site Ks' = 653 +/- 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25 degrees C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n approximately equal to 1), indicating a single site of inhibition for the two probes. The kinetics of sulfate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate transport site was the target for the action of the inhibitors. The inhibitory constants (Ki) for the transport sites were 0.45 +/- 0.10 microM for DNDS and 0.21 +/- 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus operandi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion transport sites are also the sites of inhibition and of labeling of covalent binding analogs of BS and DS.  相似文献   

10.
The divalent cation requirements of NOS activity in bovine retina homogenate supernatant were investigated. Supernatants were assayed under standard conditions (in mM: EDTA 0.45, Ca2+ 0.25, Mg2+ 4.0). In order to investigate the enzyme's dependence on divalent cations, the tissue homogenate was depleted of di- and trivalent cations by passing it over a cation-exchange column (Chelex 100). Surprisingly, NOS activity was 50-100% higher in this preparation. However, addition of either EDTA (33 M) or EGTA (1 mM) almost fully inhibited NOS activity, suggesting a requirement for residual divalent metal cation(s). Phenanthroline or iminodiacetic acid at low concentrations had little effect on activity, suggesting no requirement for Fe2+, Zn2+ or Cu2+. Ca2+ had a moderate stimulatory effect, with an optimum activity around 0.01 mM. Mg2+ or Mn2+ had little effect at concentrations < 0.25 mM. However, in the presence of EDTA, Mn2+ or Ca2+ markedly stimulated NOS activity with the optimum at 0.1 mM. At high concentrations (> 0.1-0.2 mM), all divalent cations tested (Ba2+, Zn2+, Co2+, Mn2+, Mg2+, Ca2+), as well as La3+, dose-dependently inhibited NOS activity. We propose that retinal NOS requires low concentrations of naturally occurring divalent metal ions, most probably Ca2+, for optimal activity and is inhibited by high di- and trivalent metal concentrations, probably by competition with Ca2+.  相似文献   

11.
To assess the effectiveness of anion exchange resins (Dowex M43 and Dowex monosphere 66) in neutralization and detoxification of an acid hydrolyzate solution, a fermentation medium containing inhibitors was inoculated with Saccharomyces cerevisiae. When treated with resins at a 1:1 ratio (vol:wt) for up to 20 min, 55-67% of furan and more than 95% of phenolic compounds were removed. Ethanol fermentation activity in resin-treated fermentation medium was the same as the control. There was 21-43% of the total sugar loss after one resin treatment, depending on the sugar concentration. Additional treatments increased sugar retention rate to 95%.  相似文献   

12.
Calcium binding by subcellular fractions of bovine adrenal medulla   总被引:2,自引:0,他引:2  
Significantly more calcium per gram protein was found in a relatively pure granule fraction isolated from fresh bovine adrenal medulla than in predominantly mitochondrial fractions isolated from the same tissue. Sixty-four and 55% of the calcium associated with chromaffin granule and mitochondrial fractions, respectively, was released into the supernatant upon lowering the tonicity of the medium. The per cent calcium released by this procedure was significantly greater for granules than for mitochondria (p < 0.05). The amount of calcium per gram protein released into the supernatant also was greater in granule fractions than in mitochondrial fractions (p < 0.05). These data, coupled with a previous report that 10?3 M EDTA does not markedly decrease the calcium content of whole granules, indicate that the excess calcium of the granule fractions relative to the mitochondrial fractions is maintained within the particles of that fraction. The functional significance of the relatively large amount of calcium in chromaffin granules is not clear. The presence of 150 mM sodium chloride or potassium chloride decreases calcium binding by granule or mitochondrial fragments incubated in 2.2 mM calcium chloride in 0.2 M Tris, pH 7, by about 50%. EDTA, 10?3 M, removes all but a small residual of the calcium associated with the granule or mitochondrial fragments whereas lowering the concentration of Tris increases calcium binding to about the same extent in both these subcellular fractions. The calcium-binding properties of granule and mitochondrial fragments therefore appear to be quantitatively and qualitatively similar. Inhibition of catecholamine release by relatively high concentrations of sodium may be explained by competitive inhibition of calcium binding. Calcium binding by granule fragments decreases with an increase in hydrogen ion concentration.  相似文献   

13.
A strong anionic exchange resin was used to recover lactic acid directly from fermentation in an upflow fluidized bed column, resulting in 0.18 g lactic acid/g resin bound with a subsequent elution of 94%. When the culture broth was heated and adjusted pH to 8.0, 0.4 g lactic acid was bound per g resin, with a subsequent elution of 90%. L(+) and D(–) lactic acid isomers distribution was analyzed in the elution product resulting in an increase of L(+) isomer concentration. The resin did not alter its binding capacity after 23 cycles.  相似文献   

14.
A simple method for determining glucose synthesis from radiolabeled precursors in isolated bovine hepatocytes using ion exchange resins is presented. This method allows processing of multiple small volume samples using suspensions of anion and cation exchange resins rather than traditional stacked column separation methods. Hepatocytes were isolated from calf liver by collagenase perfusion of the caudate lobe and were incubated with (14)C-labeled lactate or propionate as gluconeogenic substrates. Glucose synthesis was determined in an aliquot of cell suspension that was vortexed with a slurry of anion exchange (acetate form) resin, followed by a slurry of cation exchange resin. Newly synthesized, labeled glucose was recovered in the supernatant after centrifugation and quantitated by scintillation counting. Using this procedure, more than 98% of the unused labeled precursor was bound to the ion exchange resin and essentially 100% of a labeled glucose tracer was recovered in the supernatant. Pretreatment of hepatocyte suspensions with glucose oxidase was shown to eliminate the accumulation of radioactivity in the supernatant, thus confirming the specificity of this technique for measurement of newly synthesized glucose. This method was sensitive to changes in the rate of hepatic gluconeogenesis that resulted from changes in substrate concentration or the addition of glucagon or fatty acids to the hepatocyte incubations.  相似文献   

15.
Sopina VA 《Tsitologiia》2002,44(11):1120-1128
Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.  相似文献   

16.
The binding constant of Ca2+ to the strong cation site of bovine alpha-lactalbumin has been measured directly by monitoring the free calcium concentration by Quin 2 fluorescence. A dissociation constant of 1-4 nM was calculated, which confirms the strong calcium binding properties of this protein. In order to examine whether the metal ion chelators EDTA or EGTA affect the cation binding equilbria by binding to bovine alpha-lactalbumin, calcium binding equilibria were carefully measured under highly stabilized pH and temperature conditions. Within the concentration ranges required for competitive binding by these ligands (EDTA or EGTA) (less than 1-3 mM) these chelators produced no artifacts, in contradiction to the data of Kronman and Bratcher (Kronman, M. J., and Bratcher, S. C. (1983) J. Biol. Chem. 258, 5707-5709).  相似文献   

17.
Summary The two calcium antagonistic agents lanthanum and tetracaine cause severe disturbances in the secretory process of the exocrine pancreas, including inhibition of the rate of protein synthesis and exocytosis. The former effect resulted mainly from the inhibition of amino acid transport. Lanthanum in a concentration up to 1 mM inhibited transport of different species of amino acids in an unspecific way whereas tetracaine interfered specifically with the Na+-dependent transport system for neutral amino acids (14C--amino-isobutyric acid). Na+-independent transport of neutral amino acids (3H-leucine) was not affected. Transport inhibition was correlated to the activity of the Na+, K+-ATPase system which was measured in isolated plasma membrane fractions. At higher concentrations (5–10 mM) some uptake of lanthanum into the cells by limited endocytosis was observed. At lower concentrations lanthanum seemed to bind exclusively to certain components of the plasma membrane, mainly at the lateral and basal cell surface. Even at a concentration of 5–10 mM, no binding to the apical surface occurred. Similarly, no binding of lanthanum was observed to the limiting membrane of isolated zymogen granules, while mitochondria, contained in the same fraction, showed considerable binding affinity. The action of lanthanum and tetracaine on membrane carrier systems did not affect the interior organization of the plasma membrane. Particle density and distribution in freeze-fracture replicas as well as the submembrane microfilamentous-microtubular system and the junctional elements remained unaffected.Supported by a grant from the Deutsche Forschungsgemeinschaft (Ke 113/10). The expert technical assistance of Miss Helga Hollerbach and Miss Hiltraud Hosser and the editorial help of Mrs. Gisela Lesch is gratefully acknowledged  相似文献   

18.
The apparent maximum corticosterone binding (B max) with rat brain cytosol and the apparent dissociation constant of this steroid-receptor binding (Kd) estimated with a Scatchard plot was 2.9 X 10(-13) moles/mg cytosol protein and 4.0 X 10(-9) M, respectively. When increasing amounts of CaCl2 or MgCl2 up to 5.0 mM were added, a specific [3H] corticosterone binding increased 4-fold by CaCl2 at concentrations of 1.0-2.0 mM and 1.5-fold by MgCl2 at concentrations of 0.5-5.0 mM. The addition of MnCl2 and KCl did not affect this binding. Binding of corticosterone with rat brain cytosol receptor(s) were decreased by increasing amounts of EGTA and complete inhibition was observed at concentrations equal to and greater than 2.5 mM. Inhibition of this binding by EDTA was less than by EGTA. Either theophylline or dibutyryl cyclic AMP had no effect on this binding.  相似文献   

19.
The rat liver nuclear oxalate binding protein was isolated, purified by anion and cation exchange column chromatography using Diethyl Amino Ethyl Sephadex, Carboxy Methyl Cellulose and Carboxy Methyl Sephadex C-50 ion exchangers. The purified oxalate binding protein was found to be H1B of H1 fraction of histories. Kinetic analysis of oxalate binding showed the presence of two affinity sites, one with Kd of 133.5 nM and Bmax of 40 pmoles and another with Kd of 262.5 nM and Bmax of 210 pmoles. The optimal oxalate binding was at pH 4.2 and at 28°C. The oxalate binding was specific and reversible and not due to ionic charge interaction. The IC50 of other dicarboxylates was higher than that of oxalate. EGTA had no effect on oxalate binding but di- and tri-carboxylate carrier inhibitors and thiol modifying agents significantly lowered the binding activity. Oxalate binding to histones was significantly reduced in the presence of DNA or nucleotides, but RNA had no effect. ATP completely inhibited the oxalate binding activity at 1 mM concentration. Different tissues exhibited oxalate binding showing ubiquitous nature. Calf thymus H1 showed maximal binding similar to liver histones.Abbreviations ADP Adenosine diphosphate - ATP Adenosine triphosphate - DNA Deoxyribonucleic acid - RNA Ribonucleic acid  相似文献   

20.
The uptake of D-[14C]xylose by rat soleus muscle was stimulated rapidly and transiently by brief exposure to EDTA (0.1–20 mM). EDTA also stimulated xylose uptake in the presence of insulin (0.1 U/ml). Prolonged exposure to EDTA (60 min) inhibited insulin-stimulated xylose uptake and depressed 125I-insulin binding; these effects were associated with the lowering of muscle ATP. The stimulatory effect was abolished by the substitution of Ca-EDTA (or Mg-EDTA) for EDTA; Ca-EDTA did not eliminate the inhibitory effect. There was no inhibitory effect when Ca2+ (5 mM) was added along with Ca-EDTA, or when Zn-EDTA was used instead. There was no effect of EGTA (5 mM) on xylose uptake measured in the presence or absence of insulin. It is concluded (1) that the stimulatory effect of EDTA is most likely due to the chelation of Mg2+, (2) that the inhibitory effects of EDTA are due to the chelation of some metal ion whith a higher affinity for the chelator than either Ca2+ or Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号