首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinases, representing almost 500 proteins in the human genome, are responsible for catalyzing the phosphorylation reaction of amino acid residues at their targets. As the largest family of kinases, the protein tyrosine kinases (PTKs) have roles in controlling the essential cellular activities, and their deregulation is generally related to pathologic conditions. The recent efforts on identifying their signal transducer or mediator role in cellular signaling revealed the interaction of PTKs with numerous enzymes of different classes, such as Ser/Thr kinases (STKs), glutathione transferases (GSTs), and receptor tyrosine kinases (RTKs). In either regulation or enhancing the signaling, PTKs are determined in close interaction with these enzymes, under specific cellular conditions, such as oxidative stress and inflammation. In this concept, intensive research on thiol metabolizing enzymes recently showed their involvement in the physiologic functions in cellular signaling besides their well known traditional role in antioxidant defense. The shared signaling components between PTK and GST family enzymes will be discussed in depth in this research review to evaluate the results of recent studies important in drug targeting for therapeutic intervention, such as cell viability, migration, differentiation and proliferation.  相似文献   

2.
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.  相似文献   

3.
4.
Glutathione peroxidases (GPOXs) and glutathione transferases, also termed glutathione S-transferases (GST, EC 2.5.1.18), with activities toward a range of xenobiotic substrates including herbicides, have been characterized in etiolated pea (Pisum sativum L. cv. Feltham's First) seedlings. Crude extracts showed high activity toward a range of GST substrates including 1-chloro-2,4-dinitrobenzene (GSTC activity) and the herbicide fluorodifen (GSTF) but low activities toward chloroacetanilides and atrazine. Treatment of the pea seedlings with the herbicide safener dichlormid selectively increased the activity of GSTC and the GST which detoxified atrazine. This induction was restricted to the roots and was not observed with any of the other GST or GPOX activities. In contrast, treatment with CuCl2 increased GPOX activity in the root but had no effect on any GST activity, while treatment of epicotyls with elicitors of the phytoalexin response increased GST activity toward ethacrynic acid, but had no effect on other GST or GPOX activities. The major enzymes with GSTC, GSTF and GPOX activities were purified from pea epicotyls 3609-fold, 1431-fold and 1554-fold, respectively. During purification by hydrophobic interaction chromatography and affinity chromatography using S-hexyl-glutathione as ligand all three activities co-eluted but could be partially resolved by anion exchange chromatography and gel filtration chromatography. Both GSTC and GPOX had a molecular mass of 48 kDa and their activities were associated with a similar 27.5-kDa subunit but distinct 29-kDa subunits. GSTF could be resolved into two isoenzymes with molecular masses of 49.5 and 54 kDa. GSTF activity was associated with a unique 30-kDa subunit in addition to 27.5- and 29-kDa peptides, suggesting that the two isoenzymes were composed of differing subunits. These results demonstrate that peas contain multiple GST isoenzymes some of which have GPOX activity and that the various activities are differentially responsive to biotic and abiotic stress.  相似文献   

5.
6.
Glutathione transferases (GSTs) have been widely studied in Gram-negative bacteria and the structure and function of several representatives have been elucidated. Conversely, limited information is available about the occurrence, classification and functional features of GSTs both in Gram-positive bacteria and in Archaea. An analysis of 305 fully-sequenced Gram-positive genomes highlights the presence of 49 putative GST genes in the genera of both Firmicutes and Actinobacteria phyla. We also performed an analysis on 81 complete genomes of the Archaea domain. Eleven hits were found in the Halobacteriaceae family of the Euryarchaeota phylum and only one in the Crenarchaeota phylum. A comparison of the identified sequences with well-characterized GSTs belonging to both Gram-negative and eukaryotic GSTs sheds light on their putative function and the evolutionary relationships within the large GST superfamily. This analysis suggests that the identified sequences mainly cluster in the new Xi class, while Beta class GSTs, widely distributed in Gram-negative bacteria, are under-represented in Gram-positive bacteria and absent in Archaea.  相似文献   

7.
8.
Glutathione transferases (GSTs, EC 2.5.1.18) are a widespread family of enzymes that play a central role in the detoxification, metabolism, and transport or sequestration of endogenous or xenobiotic compounds. During the last two decades, delineation of the important structural and catalytic features of GSTs has laid the groundwork for engineering GSTs, involving both rational and random approaches, aiming to create new variants with new or altered properties. These approaches have expanded the usefulness of native GSTs, not only for understanding the fundamentals of molecular detoxification mechanisms, but also for the development medical, analytical, environmental, and agricultural applications. This review article attempts to summarize successful examples and current developments on GST engineering, highlighting in parallel the recent knowledge gained on their phylogenetic relationships, structural/catalytic features, and biotechnological applications.  相似文献   

9.
10.
Abstract: A molecular method for the detection of Paenibacillus azotofixans in soil and the wheat rhizosphere was developed. The system consisted of polymerase chain reaction (PCR) amplification of part of the variable V1 to V4 regions of the 16S ribosomal RNA gene, followed by hybridization with a specific oligonucleotide probe homologous to part of the intervening region. In vitro specificity tests showed that the detection system worked specifically for P. azotofixans strains, and did not detect other Paenibacillus species or species of other bacterial genera. Vegetative cells of a rifampicin resistant P. azotofixans derivative were trackable in Flevo silt loam (FSL) soil in 24 h experiments using both selective plating and most probable number (MPN)-PCR combined with probing, and plate counts parallelled MPN-PCR estimations of numbers of specific targets. MPN-PCR allowed for the detection of down to 102 introduced cells per g of dry soil. Introduced P. azotofixans spores did not form colonies on selective plates, but were detectable via PCR. The P. azotofixans populations introduced into the silt loam soil suffered a slow decline of the detectable plate count over a period of 14 days. MPN-PCR revealed a similar decline of the number of specific DNA targets. Greater numbers of targets were found in wheat rhizosphere from Flevo silt loam soil, and these numbers persisted throughout the experiment. Soil drying resulted in enhanced persistence of the target sequences, whereas in a constantly moist soil the numbers of target sequences declined. Rewetting of dried soil resulted in declining target sequence numbers. The MPN-PCR detection method is adequate to assess the impact of stress conditions affecting P. azotofixans in FSL and probably other soils, since it abolishes the need for culturing or specific markers and is direct and unambiguous due to its high specificity.  相似文献   

11.
We compared four proteases in the QIAamp DNA Investigator Kit (Qiagen) to extract DNA for use in multiplex polymerase chain reaction (PCR) assays. The aim was to evaluate alternate proteases for improved DNA recovery as compared with proteinase K for forensic, biochemical research, genetic paternity and immigration, and molecular diagnostic purposes. The Quantifiler Kit TaqMan quantitative PCR assay was used to measure the recovery of DNA from human blood, semen, buccal cells, breastmilk, and earwax in addition to low-template samples, including diluted samples, computer keyboard swabs, chewing gum, and cigarette butts. All methods yielded amplifiable DNA from all samples.  相似文献   

12.
无菌留取 5 4例自然流产妇女和 43例妊娠无异常孕妇血清 ,用聚合酶链反应 (PolymeraseChainReaction ,PCR)检测的人细小病毒B19(HumanParvovirusB19,B19)DNA ,在自然流产组中人细小病毒B19DNA有 15例阳性 ,阳性率为 2 7.78%。正常对照组中 ,人细小病毒B19DNA有 2例为阳性 ,阳性率为 4.65 % ,用x2 检验 ,x2 =8.86,P <0 .0 1,两组有非常显著性差异。由此总结 ,人细小病毒B19感染可能是导致自然流产的原因之一  相似文献   

13.
目的建立一种双重荧光定量PCR检测志贺毒素stx1和stx2基因的方法。方法根据不同细菌来源的stx1和stx2序列,设计PCR引物和TaqMan探针,建立双重实时荧光定量PCR检测体系,进行灵敏度、特异性和重复性评价,并对腹泻患者粪便样本进行检测分析。结果双重实时荧光定量PCR检测含志贺毒素基因重组质粒的最低检测下限为102copies/mL;该法对12种常见肠道病原菌均无特异性扩增,对不同浓度的标准质粒检测重复性高,Ct值变异系数均小于10%;对急性腹泻粪便标本的检测阳性率高于细菌分离培养。结论建立的双重实时荧光定量PCR可作为不同细菌来源的志贺毒素基因的快速鉴定方法,亦可用于人感染性腹泻标本的快速筛查。  相似文献   

14.
15.
With the development of deep sequencing methodologies, it has become important to construct site saturation mutant (SSM) libraries in which every nucleotide/codon in a gene is individually randomized. We describe methodologies for the rapid, efficient, and economical construction of such libraries using inverse polymerase chain reaction (PCR). We show that if the degenerate codon is in the middle of the mutagenic primer, there is an inherent PCR bias due to the thermodynamic mismatch penalty, which decreases the proportion of unique mutants. Introducing a nucleotide bias in the primer can alleviate the problem. Alternatively, if the degenerate codon is placed at the 5′ end, there is no PCR bias, which results in a higher proportion of unique mutants. This also facilitates detection of deletion mutants resulting from errors during primer synthesis. This method can be used to rapidly generate SSM libraries for any gene or nucleotide sequence, which can subsequently be screened and analyzed by deep sequencing.  相似文献   

16.
An identification method by PCR, specific to the Carnobacterium genus, was optimised by testing it on 28 bacterial strains. Primers from the literature were tested to differentiate Carnobacterium strains present among various bacterial species. The DNA of Carnobacterium species (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. viridans), specifically amplified by the Cb1-Cb2R primer couple at a hybridization temperature of 69 degrees C, gave only one band of 340 bp. The validation of this technique was carried out on a French soft cheese made with pasteurised milk inoculated with C. maltaromaticum LMA 28. Using classical PCR, detection was not possible for decimal dilutions of the cheese above 1 g L(-1). With Sybr Green I real time PCR, the specificity of the reaction was confirmed by the T(m) value. The standard curve constructed using the main threshold cycle and various concentrations of C. maltaromaticum LMA 28 (ranging from 10(0) to 10(8) cfu mL(-1)) showed good linearity and a sensitivity limit of > or = 10(4) cfu g(-1) of cheese. This technique was applied on commercially available cheeses made from raw cow's milk. The Sybr Green I real time PCR method constitutes an effective and easy-to-perform method to quantify Carnobacterium sp. in cheese.  相似文献   

17.
18.
BACKGROUND: Human mesenchymal stem cells (hMSCs) are a promising target for ex vivo gene therapy and lentiviruses are excellent gene transfer vehicles in hMSCs since they achieve high transduction rates with long-term gene expression. Nevertheless, senescence of hMSCs may limit therapeutic applications due to time-consuming cell selection and viral titration. Here, we describe a fast and reliable method to determine functional lentiviral titer by quantitative polymerase chain reaction (qPCR) after highly efficient ex vivo gene transfer in hMSCs. METHODS: Lentivirus production was tested with different types of packaging systems. Using p24 ELISA remaining viral particles were detected in the cell culture supernatant. The lentiviral gene transfer efficiency was quantified by FACS analysis. Lentiviral titers were determined by qPCR of expressed transgenes. RESULTS: Third-generation self-inactivating vectors showed highly efficient gene transfer in hMSCs. No viral antigen was detected in the cell culture supernatant after four media changes, suggesting the absence of infectious particles after 4 days. We observed a linear correlation between virus dilution and level of transgene expression by qPCR analysis, therefore allowing viral titering by quantification of transgene expression. Finally, we demonstrated that transduced hMSCs retained their stem cell character by differentiation towards adipogenic, osteogenic and chondrogenic lineages. CONCLUSIONS: Quantification of transgene copy numbers by qPCR is a fast and reliable method to determine functional lentiviral titer after ex vivo gene transfer in hMSCs.  相似文献   

19.
Cell culture and the use of cell lines are routinely used in basic scientific research. It is therefore imperative for researchers to ensure the origin of the cell lines used and that they are routinely re-analysed for contamination and misidentification. Inter-species contamination is relatively frequent, and the most commonly used cell lines are of human, mouse and rat derivation. We have developed simple species specific primer assays based on genomic sequence differences in vomeronasal receptor gene family members to discriminate between human, mouse and rat DNA using standard agarose gel electrophoresis. Furthermore, these PCR assays are able to identify the species composition within an inter-species mixed population. This approach therefore provides a valuable tool to enable a rapid, simple and relatively inexpensive determination of the authentication and contamination of cell cultures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号