首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between cysteine and gold nanoparticles was studied. Through the covalent combination with the -SH group and the electrostatic binding with the -NH3+ group of cysteine, gold nanoparticles can self-assemble to form a network structure, which results in greatly enhanced resonance light scattering (RLS). The experimental results demonstrate that the RLS technique offers a sensitive tool for investigations of self-assembly of nanoparticles. On the other hand, the RLS method can be applied to selectively determine cysteine with high sensitivity and simple operation. The linear range of determination of cysteine is from 0.01 to 0.25 microg/mL with the detection limit of 2.0 ng/mL (16.5 nM, 3sigma). None of the amino acids found in proteins interferes with the determination.  相似文献   

2.
In this work, a biosensor using a glassy carbon electrode modified with gold nanoparticles (AuNPs) and tyrosinase (Tyr) within a dihexadecylphosphate film is proposed. Cystamine and glutaraldehyde crosslinking agents were used as a support for Tyr immobilization. The proposed biosensor was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cyclic voltammetry in the presence of catechol. The determination of catechol was carried out by amperometry and presented a linear concentration range from 2.5 × 10−6 to 9.5 × 10−5 mol L−1 with a detection limit of 1.7 × 10−7 mol L−1. The developed biosensor showed good repeatability and stability. Moreover, this novel amperometric method was successfully applied in the determination of catechol in natural water samples. The results were in agreement with a 95% confidence level for those obtained using the official spectrophotometric method.  相似文献   

3.
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH–ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA.  相似文献   

4.
The study of small drug molecules interacting with nucleic acids is an area of intense research that has particular relevance in our understanding of relative mechanism in chemotherapeutic applications and the association between genetics (including sequence variation) and drug response. In this contribution, we demonstrate how the sequence-specific binding of an anticancer drug Dacarbazine (DTIC) to single base (A-G) mismatch could be sensitively detected by combining electrochemical detection with biosensing surface based on gold nanoparticles.  相似文献   

5.
An amperometric immunosensor was fabricated for the detection of osteoproteogerin (OPG) by covalently immobilizing a monoclonal OPG antibody (anti-OPG) onto the gold nanoparticles (AuNPs) deposited functionalized conducting polymer (5,2′:5′,2″-terthiophene-3′-carboxylic acid). AuNPs were electrochemically deposited onto the conducting polymer using cyclic voltammetry. The particle size of deposited AuNPs was controlled by varying the scan rate and was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The immobilization of anti-OPG was also confirmed using XPS. The principle of immunosensor was based on a competitive immunoassay between free-OPG and labeled-OPG for the active sites of anti-OPG. HRP was used as a label that electrochemically catalyzes the H2O2 reduction. The catalytic reduction was monitored amperometrically at −0.4 V vs. Ag/AgCl. The immunosensor showed a linear range between 2.5 and 25 pg/ml and the detection limit was determined to be 2 pg/ml. The proposed immunosensor was successfully applied for real human samples to detect OPG.  相似文献   

6.
Despite their large secretome and wide applications in bioprocesses, fungi remain underexplored in metal nanoparticles (MNP) biosynthesis. Previous studies have shown that cell surface proteins of Rhizopus oryzae play a crucial role in biomineralization of Au(III) to produce gold nanoparticles (AuNPs). Therefore, it is hypothesized that purified cell surface protein may produce in vitro AuNPs with narrow size distribution for biomedical and biocatalytic applications. However, different protein extraction methods might affect protein stability and the AuNP biosynthesis process. Herein, we have explored the extraction of cell surface proteins from R. oryzae using common detergents and reducing agent (sodium dodecyl sulfate (SDS) Triton X-100, and 1,4-dithiothreitol (DTT)) and their effect on the size and shape of the biosynthetic AuNPs. The surface proteins extracted with reducing agent (DTT) and non-ionic detergent (Triton X-100) produce spherical AuNPs with a mean particle size of 16 ± 7 nm, and 19 ± 4 nm, respectively, while the AuNPs produced by the surface protein extracted by ionic detergent (SDS) are flower-like AuNPs with broader size distribution of 43 ± 19 nm. This synthetic approach does not require use of any harsh chemicals, multistep preparation and separation process, favouring environmental sustainability. The biosynthetic AuNPs thus formed, are stable in different physiological buffers and hemocompatible, making them suitable for biomedical applications.  相似文献   

7.
8.
DNA molecules possessing multiple ferrocene (Fc) molecules as a redox active probe were prepared by the primer extension (PEX) reaction using a 2′-deoxyuridine-5′-triphosphate derivative in which Fc was connected to the C5-position of the uridine by a diethylene glycol linker. Gold nanoparticles (AuNP) covered with DNA possessing the Fc molecules were prepared by the PEX reaction on the surface. The AuNP–FcDNA conjugates exhibit a detectable electrochemical signal due to the Fc molecules. Possible application of the PEX reaction on AuNP is demonstrated for the detection of a single nucleotide mutation in the target DNA.  相似文献   

9.
Gold nanoparticles can be exploited to facilitate a highly sensitive and selective metal ion detection based on fluorescence anisotropy assay with metal ion-dependent DNA-cleaving DNAzyme. This assay allows rapid and accurate determination of metal ions in aqueous medium at room temperature. The method has been demonstrated for determination of Cu2+ and Pb2+ ions. The detection sensitivity can be significantly improved to 1 nM by using a “nanoparticle enhancement” approach. Moreover, the assay was also tested in 384-well plates for high-throughput routine determination of toxic metal ions in environmental samples. The method showed distinct advantages over conventional methods in terms of its potential sensitivity, specificity, and ability for rapid response.  相似文献   

10.
A sensitive chronocoulometric aptasensor for the detection of thrombin has been developed based on gold nanoparticle amplification. The functional gold nanoparticles, loaded with link DNA (LDNA) and report DNA (RDNA), were immobilized on an electrode by thrombin aptamers performing as a recognition element and capture probe. LDNA was complementary to the thrombin aptamers and RDNA was noncomplementary, but could combine with [Ru(NH3)6]3+ (RuHex) cations. Electrochemical signals obtained by RuHex that bound quantitatively to the negatively charged phosphate backbone of DNA via electrostatic interactions were measured by chronocoulometry. In the presence of thrombin, the combination of thrombin and thrombin aptamers and the release of the functional gold nanoparticles could induce a significant decrease in chronocoulometric signal. The incorporation of gold nanoparticles in the chronocoulometric aptasensor significantly enhanced the sensitivity. The performance of the aptasensor was further increased by the optimization of the surface density of aptamers. Under optimum conditions, the chronocoulometric aptasensor exhibited a wide linear response range of 0.1–18.5 nM with a detection limit of 30 pM. The results demonstrated that this nanoparticle-based amplification strategy offers a simple and effective approach to detect thrombin.  相似文献   

11.
The high mortality rate in cancer such as oral squamous cell carcinoma is commonly attributed to the difficulties in detecting the disease at an early treatable stage. In this study, we exploited the ability of gold nanoparticles to undergo coupled surface plasmon resonance and set up strong electric fields when closely-spaced to improve the molecular contrast signal in reflectance-based imaging and also to enhance the Raman signal of bioanalytes in cancer. Colloidal gold nanoparticles were synthesized and conjugated to anti-epidermal growth factor receptor (EGFR) for imaging. A self-assembled surface enhanced Raman scattering (SERS)-active gold nanoparticle monolayer film was also developed as a biosensing surface using a simple drop-dry approach. We have shown that gold nanoparticles could elicit an optical contrast to discriminate between cancerous and normal cells and their conjugation with antibodies allowed them to map the expression of relevant biomarkers for molecular imaging under confocal reflectance microscopy. We have also shown that the SERS spectra of saliva from the closely-packed gold nanoparticles films was differentiable between those acquired from normal individuals and oral cancer patients, thus showing promise of a simple SERS-based saliva assay for early diagnosis of oral cancer.  相似文献   

12.
The catalytic activity of gold nanoparticles (AuNPs) on a luminol–H2O2 chemiluminescence (CL) system is found to be greatly enhanced after its crosslinking aggregation induced by immunoreaction. Based on this observation, a one-step homogeneous non-stripping CL metalloimmunoassay was designed. In the presence of corresponding antigen (Ag), the immunoreaction caused the aggregation of antibody (Ab)-modified AuNPs, and these crosslinking aggregated AuNPs could catalyze luminol–H2O2 CL reaction to produce a much stronger CL signal than dispersed Ab-modified AuNPs. The assay, including immunoreaction and detection, can be accomplished in homogeneous solution. In the assay, no tedious and strict stripping of metal nanoparticles, difficult synthesis of labels, multiple steps of immunoreactions and washings, and complicated magnetic separation process were required. The detection limit of human immunoglobulin G (IgG, 3σ) was estimated to be as low as 3.2 × 10−11 g ml−1. The sensitivity was increased by two orders of magnitude over that of other AuNP-based CL immunoassay. The current CL metalloimmunoassay offers the advantages of being simple, cheap, rapid, and sensitive.  相似文献   

13.
A new gold nanoparticle-based construct has been designed to hydrophobic drugs delivery into cancer cells. Cyclodextrin scaffolds adsorbed on polyethyleneimine-coated gold nanoparticles (AuNP@PEI@CD) have been used to encapsulate hydrophobic tetrapyrrolic compounds consisting of gold complexes of 5,10,15,20-tetraphenyl porphyrin (AuTPPCl) and 5-(4-acetoxyphenyl)-10,15,20-triphenyl porphyrin (AuTPPOAcCl). These two nanoparticles have been tested for their cytotoxic activities against the two colorectal cancer cell lines HT-29 and HCT-116 and have shown significant increases in toxicity when compared to the corresponding non-vectorized tetrapyrrolic macrocycles.  相似文献   

14.
Luo XL  Xu JJ  Du Y  Chen HY 《Analytical biochemistry》2004,334(2):284-289
An amperometric biosensor for the quantitative measurement of glucose is reported. The biosensor is based on a biocomposite that is homogeneous and easily prepared. This biocomposite is made of chitosan hydrogel, glucose oxidase, and gold nanoparticles by a direct and facile electrochemical deposition method under enzyme-friendly conditions. The resulting biocomposite provided a shelter for the enzyme to retain its bioactivity at considerably extreme conditions, and the decorated gold nanoparticles in the biocomposite offer excellent affinity to enzyme. The biosensor exhibited a rapid response (within 7s) and a linear calibration range from 5.0 microM to 2.4 mM with a detection limit of 2.7 microM for the detection of glucose. The combination of gold nanoparticles affinity and the promising feature of the biocomposite with the onestep nonmanual technique favor the sensitive determination of glucose with improved analytical capabilities.  相似文献   

15.
AimA study on the possibility to use gold nanoparticles in mammography, both for a better image diagnostics and radiotherapy, is presented and discussed. We evaluate quantitatively the increment of dose released to the tumor enriched with Au-NPs with respect to the near healthy tissues, finding that for X-rays the increase can reach two orders of greater intensity.BackgroundGold nanoparticles continue to be investigated for their potential to improve existing therapies and to develop novel therapies. They are simple to obtain, can be functionalized with different chemical approaches, are stable, non-toxic, non-immunogenic and have high permeability and retention effects in the tumor cells. The possibility to use these for breast calcified tumors to be better treated by radiotherapy is presented as a possible method to destroy the tumor.Materials and methodsThe nanoparticles can be generated in water using the top-down method, should have a size of the order of 10–20 nm and be treated to avoid their coalescence. Under diagnostic X-ray monitoring, the solution containing nanoparticles can be injected locally inside the tumor site avoiding injection in healthy tissues. The concentrations that can be used should be of the order of 10 mg/ml or higher.ResultsAn enhancement of the computerized tomography diagnostics using 80–150 keV energy is expected, due to the higher mass X-ray coefficient attenuation with respect to other contrast media. Due to the increment of the effective atomic number of the biological tissue containing the gold nanoparticles, also an improvement of the radiotherapy effect using about 30 keV X-ray energy is expected, due to the higher photoelectric cross sections involved.ConclusionsThe study carried out represents a feasibility proposal for the use of Au-nanoparticles for mammographic molecular imaging aimed at radiotherapy of tumor nodules but no clinical results are presented.  相似文献   

16.
The present study evaluates the cytogenetic effects of both silver and gold nanoparticles on the root cells of Allium cepa. In this study, the root cells of Allium cepa were treated with both gold and silver nanoparticles of different concentrations (1?mg/L, 5?mg/L and 10?mg/L) along with control for 72?h. Experimental results revealed that after 72?h of exposure, a significant decrease in mitotic index (MI) from 68% (control) to 52.4% (1?mg/L), 47.3% (5?mg/L) and 41.4% (10?mg/L) for gold nanoparticles and 57.1% (1?mg/L), 53% (5?mg/l), 55.8% (10?mg/L) for silver nanoparticles. Through minute observation of the photograph, it was recorded that some specific chromosomal abnormalities such as stickiness of chromosome, chromosome breaks, nuclear notch, and clumped chromosome at different exposure conditions. Therefore, present results clearly suggest that Allium cepa root tip assay could be a viable path through which negative impact of both gold and silver nanoparticles can be demonstrated over a wide range of concentrations.  相似文献   

17.
Increasing attention has been focused on the use of nanostructures as contrast enhancement agents in medical imaging, especially in computed tomography (CT). To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agents for CT imaging. This study was designed to evaluate any effect on X-ray attenuation that might result from employing GNPs with a variety of shapes, sizes, surface chemistries, and concentrations. Gold nanorods (GNRs) and spherical GNPs were synthesized for this application. X-ray attenuation was quantified by Hounsfield unit (HU) in CT. Our findings indicated that smaller spherical GNPs (13 nm) had higher X-ray attenuation than larger ones (60 nm) and GNRs with larger aspect ratio exhibited great effect on X-ray attenuation. Moreover, poly ethylene glycol (PEG) coating on GNRs declined X-ray attenuation as a result of limiting the aggregation of GNRs. We observed X-ray attenuation increased when mass concentration of GNPs was elevated. Overall, smaller spherical GNPs can be suggested as a better alternative to Omnipaque, a good contrast agent for CT imaging. This data can be also considered for the application of gold nanostructures in radiation dose enhancement where nanoparticles with high X-ray attenuation are applied.  相似文献   

18.
We report theoretical predictions and experimental observations of the reduced detection volume with the use of surface-plasmon-coupled emission (SPCE). The effective fluorescence volume (detection volume) in SPCE experiments depends on two near-field factors: the depth of evanescent wave excitation and a distance-dependent coupling of excited fluorophores to the surface plasmons. With direct excitation of the sample (reverse Kretschmann excitation) the detection volume is restricted only by the distance-dependent coupling of the excitation to the surface plasmons. However, with the excitation through the glass prism at surface plasmon resonance angle (Kretschmann configuration), the detection volume is a product of evanescent wave penetration depth and distance-dependent coupling. In addition, the detection volume is further reduced by a metal quenching of excited fluorophores at a close proximity (below 10nm). The height of the detected volume size is 40-70nm, depending on the orientation of the excited dipoles. We show that, by using the Kretschmann configuration in a microscope with a high-numerical-aperture objective (1.45) together with confocal detection, the detection volume can be reduced to 1-2attoL. The strong dependence of the coupling to the surface plasmons on the orientation of excited dipoles can be used to study the small conformational changes of macromolecules.  相似文献   

19.
A simple and relatively cheap glucose biosensor based on a combination of gold nanoparticles (Au NPs) and glucose oxidase (GO(x) ) immobilized on a bioplatform eggshell membrane was established. Scanning electron microscopy showed successful immobilization of Au NPs/GO(x) on the eggshell membrane. The effects of pH, phosphate buffer concentration, and temperature on the glucose biosensor were studied in detail. The biosensor shows a linear response at a glucose concentration range of 5-525 μM. The detection limit of the biosensor is 2.5 μM (S/N = 3). The biosensor exhibits good repeatability with RSD = 3.6% (n = 6), good operational stability with over 300 measurements and long-term storage stability with a shelf life of at least 6 months. The response time is less than 60 s. The glucose level in commercial food samples has been successfully determined. The proposed work shows potential to develop cost-effective biosensors for biotechnological, biomedical and industrial use.  相似文献   

20.
AimThis work is focused on the Monte Carlo microdosimetric calculations taking into account the influence of the AuNPs’ shape, size and mass concentration on the radiation dose enhancement for the high-energy 6 MV and 18 MV X-ray therapeutic beams from a medical linac.BackgroundDue to a high atomic number and the photoelectric effect, gold nanoparticles can significantly enhance doses of ionizing radiation. However, this enhancement depends upon several parameters, such as, inter alia, nanoparticles’ shape etc.MethodThe simulated system was composed of the therapeutic beam, a water phantom with the target volume (with and without AuNPs) located at the depth of the maximum dose, i.e. at 1.5 cm for the 6 MV beam and at 3.5 cm for the 18 MV one. In the study the GEANT4 code was used because it makes it possible to get a very short step of simulation which is required in case of simulating the radiation interactions with nanostructures.ResultsThe dependence between the dose increase and the mass concentration of gold was determined and described by a simple mathematical formula for three different shapes of gold nanoparticles — two nanorods of different sizes and a flat 2D structure. The dose increase with the saturation occurring with the increasing mass concentration of gold was observed.ConclusionsIt was found that relatively large cylindrical gold nanoparticles can limit the increase of the dose absorbed in the target volume much more than the large 2D gold nanostructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号