首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 °C, at an operating potential of +0.4 V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol−1 was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n = 4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R2 = 0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20 mM, with those determined spectrophotometrically (R2 = 0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(106 cells min) based on a 24-h period in culture.  相似文献   

2.
Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, β-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry.  相似文献   

3.
Aims: To evaluate the sensitivity and specificity of polyclonal and monoclonal antibodies (Mabs) against intimin in the detection of enteropathogenic and enterohaemorrhagic Escherichia coli isolates using immunoblotting. Methods and Results: Polyclonal and Mabs against the intimin‐conserved region were raised, and their reactivities were compared in enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) isolates using immunoblotting analysis. In comparison with rat antiserum, rabbit anti‐intimin IgG‐enriched fraction had a stronger recognition pattern to a wide spectrum of intimin types in different EPEC and EHEC serotypes. On the other hand, murine monoclonal IgG2b specific to intimin, with dissociation constant of 1·3 × 10?8 mol l?1, failed in the detection of some of these isolates. Conclusion: All employed antibodies showed 100% specificity, not reacting with any of the eae‐negative isolates. The sensitivity range was according to the employed antisera, and 97% for rabbit anti‐intimin IgG‐enriched fraction, followed by 92% and 78% sensitivity with rat antisera and Mab. Significance and Impact of the Study: The rabbit anti‐intimin IgG‐enriched fraction in immunoblotting analysis is a useful tool for EPEC and EHEC diagnoses.  相似文献   

4.
The amount of active capture antibodies immobilized per unit square is crucial to developing effective antibody chips, biosensors, immunoassays and other molecular recognition technologies. In this study, we present a novel yet simple method for oriented antibody immobilization at high density based on the formation of an orderly, organized aggregation of immunoglobulin G (IgG) and staphylococcal protein A (SPA). Following the chelation of His-tag with Ni(2+), antibodies were immobilized on a solid surface in a three-dimensional (3D) manner and exposed the analyte receptor sites well, which resulted in a substantial enhancement of the analytical signal with more than 64-fold increase in detection sensitivity. Pull-down assays confirmed that IgG antibody can only bind to Ni(2+) matrix indirectly via a SPA linkage, where the His-tag is responsible for binding Ni(2+) and homologous domains are responsible for binding IgG Fc. The immobilization approach proposed here may be an attractive strategy for the construction of high performance antibody arrays and biosensors as long as the antibody probe is of mammalian IgG.  相似文献   

5.
The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples.  相似文献   

6.
ABSTRACT

We report a novel scaffold for clustering and oriented immobilization of human IgG1 Fc-fused lectins on biosensors without chemical modifications. This approach uses a bio-nanocapsule (BNC) displaying a tandem form of IgG Fc-binding Z domains derived from Staphylococcus aureus protein A (ZZ-BNC). Incorporating ZZ-BNC effectively increased both the sensitivity and sugar chain-binding capacity compared with the condition without ZZ-BNC.  相似文献   

7.
An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi‐crystalline and amorphous, can be monitored directly and in real‐time by an enzyme‐modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross‐linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current of the reduced mediator, hydroquinone, produced by the CDH‐catalyzed reaction with cellobiose, was recorded under constant‐potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH‐biosensors showed high sensitivity (87.7 µA mM?1 cm?2), low detection limit (25 nM), and fast response time (t95% ~ 3 s) and this provided experimental access to the transient kinetics of cellobiohydrolases acting on insoluble cellulose. The response from the CDH‐biosensor during enzymatic hydrolysis was corrected for the specificity of PcCDH for the β‐anomer of cello‐oligosaccharides and the approach were validated against HPLC. It is suggested that quantitative, real‐time data on pure insoluble cellulose substrates will be useful in attempts to probe the molecular mechanism underlying enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 2012; 109: 3199–3204. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
目的 多层生物介质的生物传感器被广泛应用于各大领域,其检测特性对于传感器优劣的评估尤为重要。本文目的在于量化表征多层生物介质的电学特征。方法 基于生物电阻抗谱技术来探究多层生物介质的电化学阻抗谱特性,并结合保角映射的方法来量化表征多层生物介质,阐明其对阻抗的影响规律,继而为生物传感器的研制与开发提供理论基础。有效提取各生物介质层修饰后电阻抗参数(Z*),从而量化表征多层生物介质层的电阻抗谱特性。结果 对多层模型进行了理论计算并构建了相关试验测试系统,研究结果表明,随着生物介质层的逐步修饰,检测区域电阻抗参数(Z*)在f=0.1~50 MHz下持续上升,理论计算结果趋势与试验结果趋势较好吻合,论证了此理论计算方法的正确性。结论 本文证实了可根据生物电阻抗谱和保角映射方法量化表征多层生物介质的电阻抗谱特性,对生物传感器的研制与开发有一定的实用价值。  相似文献   

9.
Fiber-optic biosensors have been studied intensively because they are very useful and important tools for monitoring biomolecular interactions. Here we describe a fluorescence detection fiber-optic biosensor (FD-FOB) using a sandwich assay to detect antibody-antigen interaction. In addition, the quantitative measurement of binding kinetics, including the association and dissociation rate constants for immunoglobulin G (IgG)/anti-mouse IgG, is achieved, indicating 0.38 × 106 M−1 s−1 for ka and 3.15 × 10−3 s−1 for kd. These constants are calculated from the fluorescence signals detected on fiber surface only where the excited evanescent wave can be generated. Thus, a confined fluorescence-detecting region is achieved to specifically determine the binding kinetics at the vicinity of the interface between sensing materials and uncladded fiber surface. With this FD-FOB, the mathematical deduction and experimental verification of the binding kinetics in a sandwich immunoassay provide a theoretical basis for measuring rate constants and equilibrium dissociation constants. A further measurement to study the interaction between human heart-type fatty acid-binding protein and its antibody gave the calculated kinetic constants ka, kd, and KD as 8.48 × 105 M−1 s−1, 1.7 × 10−3 s−1, and 2.0 nM, respectively. Our study is the first attempt to establish a theoretical basis for the florescence-sensitive immunoassay using a sandwich format. Moreover, we demonstrate that the FD-FOB as a high-throughput biosensor can provide an alternative to the chip-based biosensors to study real-time biomolecular interaction.  相似文献   

10.
The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn. This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn. The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity.  相似文献   

11.
The authors demonstrate herein a novel time-resolved fluoroimmunoassay (TRFIA) protocol for quantification of human IgG with the new bifunctional chelate Eu(TTA)3(5-NH2-phen) (ETNP) labeling the goat anti-human IgG. The immunoassay was conducted by following the typical procedure for sandwich-type immunoreactions. Goat anti-human IgG was immobilized on aldehyde-modified glass slides. The human IgG analyte was first captured by the primary antibody and then sandwiched by a secondary antibody labeled with the chelate ETNP. The experimental procedure was simple to follow and gave desirable levels of sensitivity and low limits of detection. To the best of our knowledge, this is the first application of the new chelate, ETNP, in an immunoassay. In comparison to typical organic, fluorescent compounds and other lanthanide fluorescent chelates used in immunoassay, the detection sensitivity of our method using ETNP chelate in the solid phase was greatly improved and a concentration of human IgG about 5 μg/L could be detected under optimal conditions. The main result of this work shows that the new chelate ETNP can be applied as a powerful fluorescent labeling material for constructing ultrasensitive TRFIAs. The detection of human IgG, using ETNP as the chelate, is a model example of the effectiveness of this immunoassay. Many other types of antigen–antibody immunoassays should be possible using the protocol described herein.  相似文献   

12.
近年来纳米材料的不断引入,为生物传感技术提供了新的研究途径,大大提高了生物传感器的性能。其中,二硫化钼(MoS2)纳米材料由于比表面积大、带隙可调、电子迁移率高等独特性质,在生物传感器中被广泛应用。本文首先介绍了基于MoS2纳米材料的电化学、场效应晶体管、表面增强拉曼散射、比色、双模式生物传感器的基本原理、研究进展及性能对比,重点分析了MoS2纳米复合材料的结构、组分等对传感器灵敏度、检测范围、检测限、特异性等性能的影响,总结了MoS2生物传感器的优势并对其未来发展趋势进行了展望,为MoS2生物传感器在生物检测领域的进一步应用以及未来研究方向提供了思路。  相似文献   

13.
We report a method to build ultrasensitive carbon nanotube-based biosensors using immune binding reaction. Here carbon nanotube-field effect transistors (CNT-FETs) were functionalized with antibody-binding fragments as a receptor, and the binding event of target immunoglobulin G (IgG) onto the fragments was detected by monitoring the gating effect caused by the charges of the target IgG. Because the biosensors were used in buffer solution, it was crucial to use small-size receptors so that the charged target IgG could approach the CNT surface within the Debye length distance to give a large gating effect. The results show that CNT-FET biosensors using whole antibody had very low sensitivity (detection limit ∼1000 ng/ml), whereas those based on small Fab fragments could detect 1 pg/ml (∼7 fM level). Moreover, our Fab-modified CNT-FET could successfully block the nontarget proteins and could selectively detect the target protein in an environment similar to that of human serum electrolyte. Significantly, this strategy can be applied to general antibody-based detection schemes, and it should enable the production of label-free ultrasensitive electronic biosensors to detect clinically important biomarkers for disease diagnosis.  相似文献   

14.
Novel, thick-film biosensors have been developed for the determination of l-glutamate in foodstuffs. The sensors were prepared by immobilization of l-glutamate oxidase by using polycarbamylsulfonate-hydrogel on a thick-film sensor. l-Glutamate oxidases obtained from Streptomyces sp. with different degree of purification were compared with their characteristic response to l-glutamate at different conditions and for their specificity, inhibition, and storage properties. These sensors were applied to determine monosodium glutamate in soy sauce samples and show good correlation with colorimetric method.  相似文献   

15.
The study concerns on-line sequential analysis of glucose and L-lactate during lactic acid fermentation using a flow injection analysis (FIA) system. Enzyme electrodes containing immobilized glucose oxidase and L-lactate oxidase were used with an amperometric detection system. A 12-bit data acquisition card with 16 analog input channels and 8 digital output channels was used. The software for data acquisition was developed using Visual C++, and was devised for sampling every hour for sequential analyses of lactate and glucose. The detection range was found to be 2–100 g l–1 for glucose and 1–60 g l–1 for L-lactate using the biosensors. This FIA system was used for monitoring glucose utilization and L-lactate production by immobilized cells of Lactobacillus casei subsp. rhamnosus during a lactic acid fermentation process in a recycle batch reactor. After 13 h of fermentation, complete sugar utilization and maximal L-lactate production was observed. A good agreement was observed between analysis data obtained using the biosensors and data from standard analyses of reducing sugar and L-lactate. The biosensors exhibited excellent stability during continuous operation for at least 45 days.  相似文献   

16.
Highly efficient protein immobilization is extremely crucial for solid-phase immunoassays. We present a strategy for oriented immobilization of functionally intact immunoglobulin G (IgG) on a polystyrene microtiter plate via iminodiacetic acid (IDA)–Ni2+ and ZZ–His protein interaction. We immobilized a ZZ–EAP (Escherichia coli alkaline phosphatase)–His fusion protein, which exhibits Fc binding, His tag, and intrinsic AP activities, and analyzed it against the interaction between rabbit IgG anti-horseradish peroxidase (anti-HRP) and its binding partner HRP to investigate the specificity and efficacy of this method. We compared the IDA–Ni2+–(ZZ–His) method with ZZ–EAP random immobilization using sandwich enzyme-linked immunosorbent assay, and the results showed that the former method had an enhanced signal, 10-fold higher sensitivity, and a wider linear range. Thus, the proposed method allows a broad range of oriented immobilized functionally intact IgG antibodies on polystyrene plates using only one type of IDA–Ni2+ chelate surface because the ZZ protein can bind to the Fc region of various IgGs.  相似文献   

17.
A cell line named PVRSV1D11 secreting monoclonal antibody (McAb) against the prokaryotically expressed coat protein (CP) of Prunus necrotic ringspot virus (PNRSV) was developed using hybridoma technology including animal immunization, cell fusion, cell line culture and enzyme‐linked immunosorbent assay (ELISA)‐based for screening. The specificity, titre and detection sensitivity of the McAb were determined by indirect ELISA to establish optimal conditions. The antibody reacted strongly with PNRSV and showed no cross‐reactions with the proteins of Plum pox virus, Prunus dwarf virus, Apple stem pitting virus, Apple stem grooving virus, Apple mosaic virus or Apple chlorotic leafspot virus. The ascites developed with PNRSV1D11 cell line showed high absorbance until it was diluted to over 6.6 × 107 fold. The McAb belonged to IgG2a isotype and was diluted by 1.28 × 105 folds as an optimal detection concentration. The detection sensitivity of the monoclonal antibody was 11.7 ng/ml protein of PNRSV. The results indicated that the McAb against the CP of PNRSV is suitable for PNRSV detection in the plants and for monitoring the dynamics of the virus by using indirect ELISA.  相似文献   

18.
The continuous spread of highly pathogenic avian influenza virus (AIV) subtype H5N1 is threatening the poultry industry and human health worldwide. Rapid and sensitive diagnostic methods are required for the H5N1 surveillance. In this study, the fluorescent (FL) probe of CdTe quantum dots (QDs) was designed using covalently linked rabbit anti‐AIV H5N1 antibody. Based on these QD–antibody conjugates, a novel sandwich FL‐linked immunosorbent assay (sFLISA) was developed for H5N1 viral antigen detection. The sFLISA allowed for H5N1 viral antigen determination in a linear range of 8.0 × 10?3 to 5.1 × 10?1 μg mL?1 with the limit of detection (LOD) of 1.5 × 10?4 μg mL?1. In comparison with virus isolation for 103 clinic samples, the sensitivity and specificity of sFLISA were found to be 93.6 and 91.1% respectively. The sFLISA supplied a novel approach to rapid and sensitive detection of AIV subtype H5N1 and showed great potential for biological applications in immunoassays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A new polymer bearing aldehyde groups was designed and synthesized by grafting 4-pyridinecarboxaldehyde onto poly(epichlorohydrin). Antibodies can be directly immobilized on the surface of the polymer film through the covalent bonding of aldehyde groups of the film with amino groups of antibodies. In this study, human immunoglobulin G (IgG) was used as a model analyte for the fabrication of an electrochemical impedance immunosensor. Using the proposed immunosensor, IgG in the range from 0.1 to 80 ng ml−1 was detected with a detection limit of 0.07 ng ml−1 (signal/noise [S/N] = 3). In addition, the electrochemical impedance immunosensor displays good stability and reproducibility.  相似文献   

20.
This paper presents the detailed design and characterisation of a regenerable integrated optical surface plasmon resonance immunoprobe as a detector for the triazine herbicide simazine. A sensor design theoretically optimised for use in the aqueous environment is presented and its fabrication described. Experimental results on the sensitivity to changes in bulk refractive index of the analyte and on non-specific binding of ovalbumin are presented. Binding inhibition immunoassays were conducted for simazine and the lower limit of detection determined to be 0.16 microgram/l using anti-simazine IgG antibodies and 0.11 microgram/l using anti-simazine Fab fragments. A sample test cycle of 20 min was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号