首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ForteBio’s Octet optical biosensor harnesses biolayer interferometry to detect and quantify molecular interactions using disposable fiber-optic biosensors that address samples from an open shaking microplate without any microfluidics. We recruited a monoclonal antibody against a panel of peptides to compare the Octet directly with Biacore’s well-established 3000 platform and Bio-Rad’s recently launched ProteOn XPR36 array system, which use surface plasmon resonance (SPR) to detect the binding of one analyte over four surfaces and six analytes over six surfaces, respectively. A sink method was used to prevent analyte from rebinding the ligand-coated Octet tips and enabled us to extract accurate kinetic rate constants, as judged by their close agreement with those determined by SPR. Although the Octet is not sensitive enough to detect the binding of small molecules directly, it can access their affinities indirectly via solution competition experiments. We conducted similar experiments on the SPR instruments to validate these measurements. The Octet is emerging as a versatile complement to other more sophisticated biosensors, and the ProteOn provides high-quality data near the sensitivity of Biacore but in a more multiplexed format. Our results provide a benchmark for assessing the performance of the above-mentioned sensors.  相似文献   

2.
We demonstrate the use of label-free real-time optical biosensors in competitive binding assays by epitope binning a panel of antibodies. We describe three assay orientations that we term in tandem, premix, and classical sandwich blocking, and we perform each of them on three platforms: ForteBio’s Octet QK, Bio-Rad’s ProteOn XPR36, and GE Healthcare’s Biacore 3000. By testing whether antibodies block one another’s binding to their antigen in a pairwise fashion, we establish a blocking profile for each antibody relative to the others in the panel. The blocking information is then used to create “bins” of antibodies with similar epitopes. The advantages and disadvantages of each biosensor, factors to consider when deciding on the most appropriate blocking assay orientation for a particular interaction system, and tips for dealing with ambiguous data are discussed. The data from our different assay orientations and biosensors agree very well, establishing these machines as valuable tools for characterizing antibody epitopes and multiprotein complexes of biological significance.  相似文献   

3.
A ProteOn XPR36 parallel array biosensor was used to characterize the binding kinetics of a set of small molecule/enzyme interactions. Using one injection with the ProteOn's crisscrossing flow path system, we collected response data for six different concentrations of each analyte over six different target protein surfaces. This "one-shot" approach to kinetic analysis significantly improves throughput while generating high-quality data even for low-molecular-mass analytes. We found that the affinities determined for nine sulfonamide-based inhibitors of the enzyme carbonic anhydrase II were highly correlated with the values determined using isothermal titration calorimetry. We also measured the temperature dependence (from 15 to 35 degrees C) of the kinetics for four of the inhibitor/enzyme interactions. Our results illustrate the potential of this new parallel-processing biosensor to increase the speed of kinetic analysis in drug discovery and expand the applications of real-time protein interaction arrays.  相似文献   

4.
The acquisition of reliable kinetic parameters for the characterization of biomolecular interactions is an important component of the drug discovery and development process. While several benchmark studies have explored the variability of kinetic rate constants obtained from multiple laboratories and biosensors, a direct comparison of these instruments' performance has not been undertaken, and systematic factors contributing to data variability from these systems have not been discussed. To address these questions, a panel of ten high-affinity monoclonal antibodies was simultaneously evaluated for their binding kinetics against the same antigen on four biosensor platforms: GE Healthcare's Biacore T100, Bio-Rad's ProteOn XPR36, ForteBio's Octet RED384, and Wasatch Microfluidics's IBIS MX96. We compared the strengths and weaknesses of these systems and found that despite certain inherent systematic limitations in instrumentation, the rank orders of both the association and dissociation rate constants were highly correlated between these instruments. Our results also revealed a trade-off between data reliability and sample throughput. Biacore T100, followed by ProteOn XPR36, exhibited excellent data quality and consistency, whereas Octet RED384 and IBIS MX96 demonstrated high flexibility and throughput with compromises in data accuracy and reproducibility. Our results support the need for a “fit-for-purpose” approach in instrument selection for biosensor studies.  相似文献   

5.
抗原-抗体的特异性结合是由抗体表面的抗原决定簇与抗原表面的表位基序间的特异性互补识别决定的。B细胞表位作图既包括B细胞抗原表位基序的鉴定(即确定抗原分子上被B细胞表面受体或抗体特异性识别并结合的氨基酸基序),也包括绘制抗原蛋白的全部或接近全部的B细胞表位基序在其一级或高级结构上的分布图谱的过程。B细胞表位作图是研发表位疫苗、治疗性表位抗体药物和建立疾病免疫诊断方法的重要前提。目前,已经建立了多种B细胞表位鉴定或绘制抗原蛋白B细胞表位图谱的实验方法。基于抗原-单抗复合物晶体结构的X-射线晶体学分析的B细胞表位作图和基于抗原蛋白或抗原片段的突变体库筛选技术的B细胞表位作图可以在氨基酸水平,甚至原子水平上揭示抗原分子上与单抗特异性结合的关键基序;其它B细胞表位作图方法(如基于ELISA的肽库筛选技术)常常只能获得包含B细胞表位的抗原性肽段,因而,很少用于最小表位基序的鉴定;而改良的生物合成肽法多用于B细胞表位的最小基序鉴定和精细作图。鉴于每种B细胞作图方法都存在各自的优势与不足,B细胞表位作图往往需要多种作图方法的有机结合。本文对目前常用的B细胞表位作图的实验方法及其在动物疫病防控中的应用进行综述,以期为研究者设计最佳的表位作图方案提供参考。  相似文献   

6.
Therapeutic monoclonal antibodies are becoming a significant and rapidly growing class of therapeutic pharmaceuticals. Their discovery and development requires fast and high-throughput methodologies for screening and selecting appropriate candidate antibodies having high affinity for the target as well as high specificity and low cross-reactivity. This study demonstrates the use of the ProteOn XPR36 protein interaction array system and its novel approach, termed One-Shot Kinetics, for the rapid screening and selection of high-affinity antibodies. This approach allows multiple quantitative protein binding analyses in parallel, providing association, dissociation, and affinity constants for several antibodies or supernatants simultaneously in one experiment. We show that the ProteOn XPR36 system is a valuable tool for use across multiple stages of the therapeutic antibody discovery and development process, enabling efficient and rapid screening after panning, affinity maturation, assay validation, and clone selection.  相似文献   

7.
Natsume T  Taoka M  Manki H  Kume S  Isobe T  Mikoshiba K 《Proteomics》2002,2(9):1247-1253
We describe a rapid analysis of interactions between antibodies and a recombinant protein present in total cell lysates. Using a surface plasmon resonance biosensor, a low concentration of glutathione-S-transferase (GST) fused protein expressed in small scale Esherichia coli culture was purified on an anti-GST antibody immobilized sensor chip. The 'on-chip purification' was verified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry by measuring the molecular masses of recombinant proteins purified on the sensor chip. The specific binding of monoclonal antibodies for the on-chip micropurified recombinant proteins can then be monitored, thus enabling kinetic analysis and epitope mapping of the bound antibodies. This approach reduced time, resources and sample consumption by avoiding conventional steps related to concentration and purification.  相似文献   

8.
Successful discovery of therapeutic antibodies hinges on the identification of appropriate affinity binders targeting a diversity of molecular epitopes presented by the antigen. Antibody campaigns that yield such broad “epitope coverage” increase the likelihood of identifying candidates with the desired biological functions. Accordingly, epitope binning assays are employed in the early discovery stages to partition antibodies into epitope families or “bins” and prioritize leads for further characterization and optimization. The collaborative program described here, which used hen egg white lysozyme (HEL) as a model antigen, combined 3 key capabilities: 1) access to a diverse panel of antibodies selected from a human in vitro antibody library; 2) application of state-of-the-art high-throughput epitope binning; and 3) analysis and interpretation of the epitope binning data with reference to an exhaustive set of published antibody:HEL co-crystal structures. Binning experiments on a large merged panel of antibodies containing clones from the library and the literature revealed that the inferred epitopes for the library clones overlapped with, and extended beyond, the known structural epitopes. Our analysis revealed that nearly the entire solvent-exposed surface of HEL is antigenic, as has been proposed for protein antigens in general. The data further demonstrated that synthetic antibody repertoires provide as wide epitope coverage as those obtained from animal immunizations. The work highlights molecular insights contributed by increasingly higher-throughput binning methods and their broad utility to guide the discovery of therapeutic antibodies representing a diverse set of functional epitopes.  相似文献   

9.
Antibody generation by phage display and related in vitro display technologies routinely yields large panels of clones detected in primary end-point screenings such as enzyme-linked immunosorbent assay (ELISA). However, for the development of clinical lead candidates, rapid determination of secondary characteristics such as kinetics and thermodynamics is of nearly equal importance. Surface plasmon resonance-based biosensors are ideal tools for carrying out such high-throughput secondary screenings, allowing preliminary but confident ranking and identification of lead clones. A key feature of these assays is the stable and reversible capture of antibody fragments from crude samples leading to high-resolution kinetic analysis of library outputs. Here we exploit the high-affinity interaction between the naturally occurring nuclease domain of E. coli colicin E7 (DNaseE7) and its cognate partner, the immunity protein 7 (Im7), to develop a ligand capture system suitable for accurate kinetic ranking of library clones. We demonstrate generic applicability for a range of antibody formats: scFv antibodies, diabodies, antigen binding fragments (Fabs), and shark VNAR single domain antibodies. The system is adaptable and reproducible, with comparable results achieved for both the Biacore T100 and ProteOn XPR36 array biosensors.  相似文献   

10.
A method has been developed for measurement of antibody affinity and cross-reactivity by surface plasmon resonance spectroscopy using the EK-coil heterodimeric coiled-coil peptide capture system. This system allows for reversible capture of synthetic peptide ligands on a biosensor chip surface, with the advantage that multiple antibody-antigen interactions can be analyzed using a single biosensor chip. This method has proven useful in the development of a synthetic peptide anti-Pseudomonas aeruginosa (PA) vaccine. Synthetic peptide ligands corresponding to the receptor binding domains of pilin from four strains of PA were conjugated to the E-coil strand of the heterodimeric coiled-coil domain and individually captured on the biosensor chip through dimerization with the immobilized K-coil strand. Polyclonal rabbit IgG raised against pilin epitopes was injected over the sensor chip surface for kinetic analysis of the antigen-antibody interaction. The kinetic rate constants, k(on) and k(off), and equilibrium association and dissociation constants, KA and KD, were calculated. Antibody affinities ranged from 1.14 x 10(-9) to 1.60 x 10(-5) M. The results suggest that the carrier protein and adjuvant used during immunization make a dramatic difference in antibody affinity and cross-reactivity. Antibodies raised against the PA strain K pilin epitope conjugated to keyhole limpet haemocyanin using Freund's adjuvant system were more broadly cross-reactive than antibodies raised against the same epitope conjugated to tetanus toxoid using Adjuvax adjuvant. The method described here is useful for detailed characterization of the interaction of polyclonal antibodies with a panel of synthetic peptide ligands with the objective of obtaining high affinity and cross-reactive antibodies in vaccine development.  相似文献   

11.
Localization of the interface between the candidate antibody and its antigen target, commonly known as epitope mapping, is a critical component of the development of therapeutic monoclonal antibodies. With the recent availability of commercial automated systems, hydrogen / deuterium eXchange (HDX) is rapidly becoming the tool for mapping epitopes preferred by researchers in both industry and academia. However, this approach has a significant drawback in that it can be confounded by ‘allosteric’ structural and dynamic changes that result from the interaction, but occur far from the point(s) of contact. Here, we introduce a ‘kinetic’ millisecond HDX workflow that suppresses allosteric effects in epitope mapping experiments. The approach employs a previously introduced microfluidic apparatus that enables millisecond HDX labeling times with on-chip pepsin digestion and electrospray ionization. The ‘kinetic’ workflow also differs from conventional HDX-based epitope mapping in that the antibody is introduced to the antigen at the onset of HDX labeling. Using myoglobin / anti-myoglobin as a model system, we demonstrate that at short ‘kinetic’ workflow labeling times (i.e., 200 ms), the HDX signal is already fully developed at the ‘true’ epitope, but is still largely below the significance threshold at allosteric sites. Identification of the ‘true’ epitope is supported by computational docking predictions and allostery modeling using the rigidity transmission allostery algorithm.  相似文献   

12.
An epitope may be defined as a specific site on an antigen module characterized by the binding of one monoclonal antibody (MAb). Epitope mapping by surface plasmon resonance in the BIAcore biosensor may be performed to characterize an antigen or a group of specific MAbs or both. This article describes the BIAcore instrument and methods for such mapping. Examples include molecular interaction studies with simple and complex proteins, such as myoglobin and calprotectin, respectively.  相似文献   

13.
Sequence variation in the monoclonal-antibody-U36-defined CD44v6 epitope   总被引:2,自引:0,他引:2  
 Monoclonal antibody (mAb) U36 was developed for the treatment of minimal residual disease of head and neck squamous cell carcinoma (HNSCC). The mAb-U36-defined antigen was characterized by cDNA cloning, and was shown to be identical to the keratinocyte-specific CD44 splice variant epican. The epitope recognized by mAb U36 was shown to be located in the v6 domain. Two amino acids within the epitope appeared to differ from the sequences that have been described in literature. The sequence of the epitope appeared to contain glutamic acid at position 367 and lysine at position 374, while valine and arginine respectively have been described before. Interestingly, another anti-CD44v6 antibody with possible clinical application, VFF18, recognizes an epitope in the same area. With respect to the applicability of these antibodies for tumor targeting, this variation might have an influence on antibody-antigen interaction and mAb accumulation in the tumor. Furthermore, this observation raised the question whether the different epitopes are related to the malignant behavior of tumor cells. In this paper we determine the relative affinity of mAb U36 for the variant epitope sequences by tumor cell binding assays using synthetic peptides for competition. The presence of glutamic acid instead of valine at position 367 caused strong competition. Further evaluation showed that the published valine variant does not exist in vivo, and is the result of a sequencing artefact. The effect of substitution of lysine for arginine at position 374 had no effect on the binding of mAb U36 to the cells. This amino acid variation was shown to be due to allelic polymorphism. There was no trend towards allelic imbalance in tumor cells as compared to normal cells. Received: 5 June 1997 / Accepted: 14 August 1997  相似文献   

14.
The diversity of B-cell response to a large immunogen gives rise to a series of antibodies that can be used for epitope mapping of an antigen. This is based on the relative reaction pattern for all antibodies in relation to each other and other ligands to the studied protein. With the introduction of an instrument system, BIAcore, label-free real-time biomolecular interaction analysis (BIA) was made possible. It is based on biosensor technology, with a carboxymethyl-dextran-coated gold surface and an integrated fluidics for transport of liquid. The basic idea is to measure label-free binding of an analyte from a continuous flow to an immobilized ligand in real time. With an automatic approach, quantitative analysis and sequential injection characteristic biospecific binding parameters such as affinity and kinetic constants can be measured. The instrument system was adopted at an early stage for epitope mapping. With label-free detection, antibodies from tissue culture media can be analyzed without purification. Binding of both antigen and a series of antibodies can be individually determined in molar ratio by sequential injections. The quantitative aspects of BIA offer the possibility of further refined epitope mapping. The relative binding pattern for 30 monoclonal antibodies against HIV-1 p24 core protein has been analyzed. Multideterminant analysis and peptide identification of binding sites were performed. Verification of the binding pattern has also been performed in relation to mapping with ELISA as well as the binding to peptides derived from the antigen sequence. Functional domains of proteins in relation to an epitope map have been identified forTaqpolymerase.  相似文献   

15.
Abstract Epitope mapping with sera from a range of infected patients showed that antibodies are commonly produced which cross-react with a number of epitopes on human heat shock protein 90 (HSP 90). Such autoreactive antibodies were particularly frequent in patients suffering from systemic candidiasis (9 patients), invasive aspergillosis (6 patients), ABPA (2 patients), a patient with aspergilloma and one with malaria. The patient with malaria recognised similar epitopes to those with invasive aspergillosis and candidiasis including the highly conserved epitope LKVIRKVIRK and an epitope NNLGTI which was otherwise only recognised by patients with candidiasis. Crossreacting antibodies to relatively few epitopes occurred in patients with Enterococcus faecalis and Corynebacterium jeikeium endocarditis. This was contrasted with the results from 6 patients with systemic lupus erythematosus (SLE) who were positive on immunoblot against fungal HSP 90. These did not react with the above epitopes but reacted with other areas within human HSP 90.  相似文献   

16.
A biosensor system aimed at real-time measuring molecular interactions among label-free reactants has been used for a comparative analysis of the binding features (i.e., association-dissociation rates and affinity constants) as well as epitope mapping between bivalent monoclonal antibodies and the derived monovalent bispecific monoclonal antibody. The results show that observed different affinities between parental and derived bispecific antibodies concern the association rate constant, whereas the dissociation rate constants are unaltered. The apparent affinity-constant values determined by solid-phase radioimmunoassay yielded figures almost overlapping with those obtained with the biosensor instrument. The results of the present work indicate that the biosensor system has gained a key role not only as a tool for the study of antigen-antibody interactions, but also for setting up the reference parameters for the selection of the best candidates in the generation of bispecific monoclonal antibodies.  相似文献   

17.
This review describes a new type of label-free optical biosensor that is inexpensively manufactured from continuous sheets of plastic film and incorporated into standard format microplates to enable highly sensitive, high-throughput detection of small molecules, proteins and cells. The biosensor and associated detection instrumentation are applied to review two fundamental limiting issues for assays in proteomics research and drug discovery: requirement for quantitative measurement of protein concentration and specific activity, and measurements made with complex systems in highly parallel measurements. SRU BIosystems, Inc.’s BIND? label-free detection will address these issues using data examples for hybridoma screening, epitope binning and mapping, small-molecule screening, and cell-based functional assays. The review describes several additional applications that are under development for the system, and the key issues that will drive adoption of the technology over the next 5 years.  相似文献   

18.
Surface plasmon resonance (SPR)-based biosensors have been widely utilized for measuring interactions of a variety of molecules. Fewer examples include higher biological entities such as bacteria and viruses, and even fewer deal with plant viruses. Here, we describe the optimization of an SPR sensor chip for evaluation of the interaction of the economically relevant filamentous Potato virus Y (PVY) with monoclonal antibodies. Different virus isolates were efficiently and stably bound to a previously immobilized polyclonal antibody surface, which remained stable over subsequent injection regeneration steps. The ability of the biosensor to detect and quantify PVY particles was compared with ELISA and RT-qPCR. Stably captured virus surfaces were successfully used to explore kinetic parameters of the interaction of a panel of monoclonal antibodies with two PVY isolates representing the main viral serotypes N and O. In addition, the optimized biosensor proved to be suitable for evaluating whether two given monoclonal antibodies compete for the same epitope within the viral particle surface. The strategy proposed in this work can help to improve existing serologic diagnostic tools that target PVY and will allow investigation of the inherent serological variability of the virus and exploration for new interactions of PVY particles with other proteins.  相似文献   

19.
CD36 is a membrane glycoprotein expressed by several cell types, and play a role as a receptor for different physiological and pathological ligands. An immunodominant domain of CD36 has been described in the amino acidic region 155-183, where many ligands and monoclonal antibodies (MoAbs) react. MoAbs against CD36 have proved useful in structural as well as functional studies. One of these antibodies, MoAb NL07, recognizes a conformational epitope that is acquired in the late steps of the CD36 maturation. The NL07 epitope appears to be functionally relevant and blocks CD36-mediated binding to red blood cells infected with the malaria parasite Plasmodium falciparum (IRBC). In this work a mutant COS-7 clone expressing NL07-negative CD36 molecules on the cell surface was investigated. In the mutant, the methionine in position 156 of the wild type CD36 sequence was replaced by a valine. It was determined that methionine 156 was essential for NL07 reactivity, mapping the NL07 epitope to the vicinity of the functionally important immunodominant domain (aa 155-183) of CD36. Although methionine 156 is located in this region, the CD36V156 mutated molecule was apparently functional and able to bind IRBC and oxidized LDL.  相似文献   

20.
We evaluated the performance of Fujifilm’s new AP-3000 surface plasmon resonance biosensor for kinetic analysis and fragment screening. Using carbonic anhydrase II as a model system, we characterized a set of 10 sulfonamide-based inhibitors that range in molecular mass from 98 to 341 Da and approximately 10,000-fold in affinity (0.4 mM to 20 nM). Although the data collected from the AP-3000 were generally similar to those collected using a Biacore T100, the AP-3000’s stop-flow analyte delivery system complicated the shapes of the association- and dissociation-phase binding responses. We illustrate how reasonable estimates of the kinetic rate constants can be extracted from AP-3000 data by limiting data analysis to only the regions of the responses collected during flow conditions. We also provide an example of the results obtained for a fragment-screening study with the AP-3000, which is the ideal application of this technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号