首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

A new liquid-phase piezoelectric immunosensor (LP-PEIS), which can detect Schistosoma japonicum (Sj) circulating antigens (SjCAg) quantificationally, was developed.

Methods

The IgG antibodies were purified from the sera of rabbits which had been infected or immunized by Sj and were immobilized on the surface of piezoelectric quartz crystal in LP-PEIS by staphylococcal protein A (SPA). It was used to detect SjCAg in sera of rabbits which had been infected by Sj in order to acquire some optimum conditions for detecting SjCAg. Finally, the LP-PEIS with optimum conditions was used to detect SjCAg in sera of patients who had been infected by Sj, and was compared with sandwich ELISA.

Results

A lot of optimum conditions of LP-PEIS for detecting SjCAg had been acquired. In the detection of patients' sera with acute Schistosomiasis, LP-PEIS has higher positive rate (100%) and lower false positive rate (3.0%) than sandwich ELISA (92.8%, 6.0%). However, there were no significant difference between LP-PEIS and sandwich ELISA.

Conclusions

LP-PEIS can quantificationally detect SjCAg in patients' sera as well as sandwich ELISA.  相似文献   

2.
A simple, highly sensitive immunosensor for the direct determination of immunoglobulin (Ig) in canine serum based on a piezoelectric crystal accommodated in a flow-cell was developed and optimized. The new biosensor is also useful for discriminating between Ig subclasses present in canine serum by using specific monoclonal antibodies binding to the coated crystal. Various canine monoclonal anti-IgG were deposited onto the surface of the gold-coated crystal resonator using the self-assembly technique to form a receptor layer. The highly ordered self-assembled monolayers thus obtained provide a well-controlled surface structure and many advantages as regards sensing performance. The results obtained with the proposed immunosensor were compared with those provided by a protein A-based orientation-controlled immobilization method for the same monoclonal antibodies and also with direct physical adsorption of the antibodies. The crystal was accommodated in a flow-cell that was inserted into a buffer flowing stream in order to make resonant frequency measurements.  相似文献   

3.
A label-free electrochemical immunosensor based on Nafion/carbon nanotubes (CNTs)/charged pyridinecarboxaldehyde composite film was developed for the detection of hepatitis B surface antigen. Nafion/CNTs/charged pyridinecarboxaldehyde nanocomposites were prepared by dispersing charged pyridinecarboxaldehyde and CNTs in Nafion solution. The nanocomposites were cast on the electrode surface to form aldehyde-terminated composite film that can covalently bind antibody on the film without using other reagent. The immunosensor response was linearly changed with hepatitis B surface antigen concentration in the range from 0.1 to 25 ng ml−1 with a detection limit (signal/noise ratio = 3) of 0.04 ng ml−1. Some important advantages such as simple preparation, good stability, reproducibility, and selectivity of the immunosensor were achieved.  相似文献   

4.
We present the DNA-assisted control of enzymatic activity for the detection of a target protein using a new type of DNA–enzyme conjugate. The conjugate is composed of an enzyme inhibitor to regulate enzyme activity and a DNA aptamer to be responsive toward the analyte protein. Glutathione S-transferase (GST) and thrombin were selected as a model enzyme and an analyte protein. A hexahistidine tag was genetically attached to the C terminus of the GST, and the 5′ end of an oligonucleotide was conjugated with nitrilotriacetic acid (NTA) for the site-specific conjugation of the DNA with the GST based on a Ni2+ complex interaction. We found that fluorescein acted as a weak inhibitor of GST and succeeded in the regulation of GST activity by increasing the local concentration of the weak inhibitor by the hybridization of a 3′-end fluorescein-modified DNA. The catalytic activity of the DNA aptamer–enzyme conjugate showed a dose-dependent response to thrombin, indicating that the GST activity was clearly recovered by the binding of the DNA aptamer to thrombin. The current system enables the sensitive and specific detection of thrombin simply by measuring the enzymatic activity in a homogeneous medium.  相似文献   

5.
The fabrication of protein A film on self-assembled monolayer was done for the construction of immunosensor using surface plasmon resonance (SPR) measurement. The layer of heterobifunctional linker, N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) was self-assembled on the gold (Au) surface. Due to the succinimidyl functional group in SPDP to be reacted with amine (NH2) group of protein A, the covalent immobilization of protein A was subsequently induced toward Au surface. The characteristics of film formation were investigated using SPR with respect to the various concentrations of SPDP and protein A. The optimal concentration for the film formation was found to be 0.1 mg/mL of SPDP and 0.1 mg/mL of protein A, respectively. The surface topography of protein A layer using atomic force microscopy showed that the heteromolecular layer was formed successfully. The antibody, anti-bovine serum albumin (BSA), was immobilized onto protein A layer, and the fabricated antibody layer was applied for the detection of BSA. The extent of BSA–antibody binding was measured using SPR and its lower detection limit of BSA was 100 pM.  相似文献   

6.
A new polymer bearing aldehyde groups was designed and synthesized by grafting 4-pyridinecarboxaldehyde onto poly(epichlorohydrin). Antibodies can be directly immobilized on the surface of the polymer film through the covalent bonding of aldehyde groups of the film with amino groups of antibodies. In this study, human immunoglobulin G (IgG) was used as a model analyte for the fabrication of an electrochemical impedance immunosensor. Using the proposed immunosensor, IgG in the range from 0.1 to 80 ng ml−1 was detected with a detection limit of 0.07 ng ml−1 (signal/noise [S/N] = 3). In addition, the electrochemical impedance immunosensor displays good stability and reproducibility.  相似文献   

7.
摘要:【目的】结合纳米技术建立检测大肠杆菌(Escherichia coli)O157︰H7高灵敏检测技术。【方法】采用化学共沉淀法制备出核心粒径约为10 nm的免疫纳米磁颗粒,柠檬酸钠还原法制备粒径约为20 nm的免疫胶体金。压电免疫传感器通过金黄色葡萄球菌蛋白A(Protein A from Staphylococcus aureus SPA)法将抗体固定于石英晶振上,两种免疫纳米颗粒借助不同的抗体连接于传感器上对检测频率信号进行放大。【结果】SPA在石英晶振上的最佳固定浓度和时间为1.2 mg/mL和40 min,抗体的最佳固定浓度和时间为1.0 mg/mL和60 min。压电免疫传感器通过两种免疫纳米颗粒的放大作用,使其对大肠杆菌O157︰H7的检测限从104 cfu/mL提高到101 cfu/mL。【结论】免疫纳米颗粒强化对压电免疫传感器的检测频率信号具有很好的放大效应,可以明显提高其检测灵敏度。  相似文献   

8.
Daratumumab, an FDA approved antibody drug, displays specific targeting ability to abnormal white blood cells overexpressing CD38 and provides efficacious therapy for multiple myeloma. Here, in order to achieve enhanced remission of multiple myeloma, we designed Dara-DM4, antibody drug conjugates (ADCs) by conjugating Daratumumab and DM4 via a disulfide linker. Dara-DM4 showed significantly higher cellular uptake and inhibitory efficacy on MM1S cells that overexpressing CD38 with an IC50 of 0.88?µg/mL post 72?hr treatment. These results support a promising ADCs strategy for multiple myeloma treatment.  相似文献   

9.
The immobilization of anti-Salmonella antibodies by two methods were studied and evaluated for their potential use in a piezoelectric biosensor. The optimum temperature-time combinations for the highest immobilization yields were determined for both methods. Protein A binding was found to be 67.4+/-3.8% on the gold surface which then allowed an immobilization of 42.1+/-2.09% antibody. The degree of antibody immobilization via surface aldehyde groups of glutaraldehyde (GA) on a precoated quartz crystal with polyethylenimine (PEI) was 31.6+/-0.3%. A piezoelectric probe was designed and used in dry assays to observe the frequency change due to addition of mass by the immobilization layers. The frequency changes recorded showed a better reproducibility and less added mass for the Protein A method. The frequency decrease due to microg of added antibodies was compared to frequency decrease calculated by the Sauerbrey equation. The experimental data was found to be only approximately 8% of theoretical data. The functionality of the immobilized antibodies with the Protein A method was tested with S. typhimurium in a wet chamber and the frequency decrease was compared to results of a similar system activated with PEI-GA immobilization. The frequency decreases with S. typhimurium concentration of approximately 1.5 x 10(9) CFU/ml were 50+/-2 Hz and 44+/-3 Hz for the Protein A method and PEI-GA method, respectively. It was concluded that although both methods resulted in comparable activities in terms of % immobilized protein and frequency decreases due to Salmonella binding, the Protein A method was favorable due to stability and better reproducibility of the immobilization layers.  相似文献   

10.
Label-free immunosensor based on gold nanoparticle silver enhancement   总被引:1,自引:0,他引:1  
A label-free immunosensor for the sensitive detection of human immunoglobulin G (IgG) was prepared based on gold nanoparticle-silver enhancement detection with a simple charge-coupled device (CCD) detector. The gold nanoparticles, which were used as nuclei for the deposit of metallic silver and also for the adsorption of antibodies, were immobilized into wells of a 9-well chip. With the addition of silver enhancement buffer, metallic silver will deposit onto gold nanoparticles, causing darkness that can be optically measured by the CCD camera and quantified using ImageJ software. When antibody was immobilized onto the gold nanoparticles and antigen was captured, the formed immunocomplex resulted in a decrease of the darkness and the intensity of the darkness was in line with IgG concentrations from 0.05 to 10 ng/ml. The CCD detector is simple and portable, and the reported method has many desirable merits such as sensitivity and accuracy, making it a promising technique for protein detection.  相似文献   

11.
We report herein a simple and effective way to photochemically immobilize biomolecules onto a fibre-optic silica surface. The system is based on a photoreactive benzophenone derivative that is bound to SiO2 surfaces of the optical fibre via a silane anchor. The benzophenone derivative was 4-allyloxybenzophenone, synthesized by standard procedures that were later used to synthesize the 4-(3'-chlorodimethylsilyl) propyloxybenzophenone and 4-(3'-dichloromethylsilyl) propyloxybenzophenone by regular hydrosilation procedures. After silanization with the benzophenone derivatives, the fibres were immersed in a cholera toxin B subunit solution and illuminated with UV light (wavelength > 345 nm). As a result of the photochemical reaction, a thin layer of the antigen was covalently bound to the benzophenone-modified surface. The photochemically modified fibre-optics were then tested as immunosensors in the detection of cholera anti-toxin antibody and revealed through chemiluminescence measurements. A secondary antibody labelled with horseradish peroxidase acted as the marker for the cholera toxin antibody. A photo-electronic set-up was designed specifically to monitor the signal. The immunosensor system was shown to be both specific and sensitive. The lowest rabbit serum titre detected was 1:1 700,000.  相似文献   

12.
A flow-type enzyme immunosensor was prepared for the electrochemical determination of human serum albumin (HSA). The immunosensor was constructed from the immobilized antibody (anti-HSA IgG) reactor and an oxygen electrode. The immunochemical reaction of catalase-labelled antibody with HSA was completed with 30 min. After the immunochemical reaction, hydrogen peroxide solution was injected into the system and a peak current was obtained within 2 min. A linear relationship was observed between the current increase and the logarithm of HSA concentration in the range 10−8-10−6 g ml−1. The minimum measurable concentration was 10−8 g ml−1. The current increase was reproducible with 10% of the relative errors when a sample solution containing 10−7 g ml−1 of HSA was used. The minimum measurable concentration increased to 10−9 g ml−1 when hydrogen peroxide was recycled for 5 min in the reactor system. The immobilized antibody reactor could be reused. HSA in human serum was determined by the system proposed.  相似文献   

13.
Semiconductor quantum dots (QDs) are proved to be unique fluorescent labels providing excellent possibilities for high-throughput detection and diagnostics. To explore in full QDs’ advantages in brightness, photostability, large Stokes shift, and tunability by size fluorescence emission, they should be rendered stable in biological fluids and tagged with the target-specific capture molecules. Ideal QD-based nanoprobes should not exceed 15 nm in diameter and should contain on their surface multiple copies of homogeneously oriented highly active affinity molecules, for example, antibodies (Abs). Direct conjugation of QDs with the Abs through cross-linking of QDs’ amines with the sulfhydryl groups issued from the reduced Abs’ disulfide bonds is the common technique. However, this procedure often generates conjugates in which the number of functionally active Abs on the surface of QDs does not always conform to expectations and is often low. Here we have developed an advanced procedure with the optimized critical steps of Ab reduction, affinity purification, and QD–Ab conjugation. We succeeded in reducing the Abs in such a way that the reduction reaction yields highly functional, partially cleaved, 75-kDa heavy–light Ab fragments. Affinity purification of these Ab fragments followed by their tagging with the QDs generates QD–Ab conjugates with largely improved functionality compared with those produced according to the standard procedures. The developed approach can be extended to conjugation of any type of Ab with different semiconductor, noble metal, or magnetic nanocrystals.  相似文献   

14.
Picloram, a herbicide widely used for broadleaf weed control, is persistent and mobile in soil and water with adverse health and environmental effects. It is important to develop a sensitive method for accurate detection of trace picloram in the environment. In this article, a type of ordered three-dimensional (3D) gold (Au) nanoclusters obtained by two-step electrodeposition using the spatial obstruction/direction of the polycarbonate membrane is reported. Bovine serum albumin (BSA)-picloram was immobilized on the 3D Au nanoclusters by self-assembly, and then competitive immunoreaction with picloram antibody and target picloram was executed. The horseradish peroxidase (HRP)-labeled secondary antibody was applied for enzyme-amplified amperometric measurement. The electrodeposited Au nanoclusters built direct electrical contact and immobilization interface with protein molecules without postmodification and positioning. Under the optimal conditions, the linear range for picloram determination was 0.001-10 μg/ml with a correlation coefficient of 0.996. The detection and quantification limits were 5.0 × 10−4 and 0.0021 μg/ml, respectively. Picloram concentrations in peach and excess sludge supernatant extracts were tested by the proposed immunosensor, which exhibited good precision, sensitivity, selectivity, and storage stability.  相似文献   

15.
In this work, protonated l-cysteine was entrapped in Nafion (Nf) membrane by cation exchange function, forming Nf-Cys (cysteine) composite membrane, which was more stable, compact, biocompatible, and favorable for mass and electron transfer compared with Nf film solely. Then gold (Au) nanoparticles were adsorbed onto the electrode surface by thiol groups on the composite membrane. After that, nano-Au monolayer was formed, onto which carcinoembryonic antibody was loaded to prepare carcinoembryonic antigen (CEA) immunosensor. The results indicated that the immunosensor had good current response for CEA using potassium ferricyanide as the redox probe. A linear concentration range of 0.01 to 100 ng/ml with a detection limit of 3.3 pg/ml (signal/noise = 3) was observed. Moreover, the morphology of the modified Au substrates was investigated with atomic force microscopy, and the electrochemical properties and performance of modified electrodes were investigated by cyclic voltammograms and electrochemical impendence spectroscopy. The results exhibited that the immunosensor has advantages of simple preparation, high sensitivity, good stability, and long life expectancy. Thus, the method can be used for CEA analysis.  相似文献   

16.
High-capacity surfaces can enhance analyte-binding kinetics and be beneficial for rapid immunoassays. Site-specifically immobilized, oriented recombinant single-chain Fv (scFv) and Fab antibody fragments were compared with a conventional, nonoriented monoclonal antibody (Mab) to capture antigen from serum to solid surface in a one-step, two-site thyroid-stimulating hormone (TSH) immunoassay with a 5-min incubation time. The assay used a ready-to-use dry reagent-based concept and time-resolved fluorescent measurement. TSH binding capacities were 3.0-fold (Fab) and at least 4.1-fold (scFv) higher when recombinant antibodies were used instead of Mab. Recombinant antibody fragments also produced faster kinetics (5 vs. 45-min saturation level) than Mab: 21-25% (Mab) versus 72-83% (scFv and Fab). Analytical sensitivities of the 5-min assay were 0.09 mIU/L TSH (Fab), 0.16 mIU/L TSH (scFv), and 0.26 mIU/L TSH (Mab). Between-run variabilities were 4.2-7.9% (Fab), 4.6-17.7% (scFv), and 5.5-7.2% (Mab). The assays correlated well with the AutoDELFIA hTSH (human TSH) Ultra assay (r = 0.99, n = 109). Fab was good in all aspects of immunoassay—capacity, kinetics, sensitivity, and analytical performance. As a homogeneous, stable, and small-sized binding molecule with optimized surface-coating properties as well as reduced risk for interference by heterophilic antibodies, Fab fragment is a promising and realistic immunoreagent for the future.  相似文献   

17.
The development of a cost-effective method for manufacturing immunoassays is a key step towards their commercial use. In this study, a piezoelectric inkjet printer and a nylon membrane were used to fabricate a disposable immunoassay. Using a piezoelectric inkjet printer, a cross-hatch pattern of goat anti-mouse antibody (GαM) and rabbit anti-horseradish peroxidase (RαHRP) antibody were deposited on the nylon membrane. These patterns were subsequently treated with a solution containing rabbit anti-goat antibody labeled with horseradish peroxidase (RαG-HRP). The effectiveness of the immobilization process was examined using tetramethylbenzidine (TMB), which oxidizes in the presence of HRP to form a visible precipitate. Optical evaluation of the TMB precipitate was used to assess the precision of the features in the inkjet-printed pattern as well as antibody functionality following inkjet printing. Uniform patterns that contained functional antibodies were fabricated using the piezoelectric inkjet printer. These results suggest that piezoelectric inkjet printing may be used to fabricate low-cost disposable immunoassays for biotechnology and healthcare applications.  相似文献   

18.
In this article, a novel, label-free, and inherent electroactive redox immunosensor for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and Nile blue A (NB) hybridized electrochemically reduced graphene oxide (NB–ERGO) is proposed. The composite of NB–graphene oxide (NB–GO) was prepared by π–π stacking interaction. Then, chronoamperometry was adopted to simultaneously reduce HAuCl4 and nanocomposites of NB–GO for synthesizing AuNPs/NB–ERGO. The immunosensor was fabricated by capturing CEA antibody (anti-CEA) at this nanocomposite modified electrode. The immunosensor determination was based on the fact that, due to the formation of antigen–antibody immunocomplex, the decreased response currents of NB were directly proportional to the concentrations of CEA. Under optimal conditions, the linear range of the proposed immunosensor was estimated to be from 0.001 to 40 ng ml−1 and the detection limit was estimated to be 0.00045 ng ml−1. The proposed immunosensor was used to determine CEA in clinical serum samples with satisfactory results. The proposed method may provide promising potential application in clinical immunoassays with the properties of facile procedure, stability, high sensitivity, and selectivity.  相似文献   

19.
This paper describes the development of a highly sensitive competitive immunoassay with the piezoelectric sensor. The immobilized derivative of cocaine was benzoylecgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO). For the immobilization of BZE-DADOO, the conjugate BZE-DADOO with 11-mercaptomonoundecanoic acid (MUA) was synthesized via 2-(5-norbornen-2,3-dicarboximide)-1,1,3,3-tetramethyluronium-tetrafluoroborate (TNTU), followed by the creation of the conjugate monolayer on the piezosensor electrodes. For the optimization of the competitive assay we used electrodes with rough or smooth gold areas and for the interaction with immobilized antigen different anti-cocaine sheep polyclonal (pAb, either whole IgG or Fab fragment) and mouse monoclonal (mAb, whole IgG) antibodies. The assay of cocaine developed achieved a detection limit (LOD) of 100 pmol/l (34 ng/l) using the sheep antibody (IgG) and piezoelectric sensors with a smooth gold surface. The total time of one analysis was 15 min and the measuring area of the sensor could be used more than 40 times without losing its sensitivity.  相似文献   

20.
We propose a novel method to prepare a DNA–protein conjugate using histidine-tag (His-tag) chemistry. Oligo-DNA was modified with nitrilotriacetate (NTA), which has high affinity to a His-tag on recombinant protein via the complexation of Ni2+. Investigations using a microplate which displayed a complementary DNA-strand revealed that a NTA-modified DNA–protein conjugate was formed and immobilized in the presence of Ni2+ on the microplate. We then adopted alkaline phosphatase (AP) as a model protein, and application of the DNA–AP conjugate was demonstrated in a thrombin aptamer-based detection system with a detection limit of approximately 10 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号