首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative real-time PCR (qPCR) is an effective and widely used method to analyze expression patterns of target genes. Selection of stable reference genes is a prerequisite for accurate normalization of target gene expression by qRT-PCR. In Iris germanica L., no studies have yet been published regarding the evaluation of potential reference genes. In this study, nine candidate reference genes were assessed at different flower developmental stages and in different tissues by four different algorithms (GeNorm, NormFinder, BestKeeper, and RefFinder). The results revealed that ACT11 (Actin 11) and EF1α (Elongation factor 1 alpha) were the most stable reference genes in different tissues, whereas TUA (Tubulin alpha) and UBC9 (Ubiquitin-protein ligase 9) were the most stable ones in different flower developmental stages. UBC9 and ACT11 were the most stable reference genes in all of the tested samples, while the SAMDC (S-Adenosylmethionine decarboxylase) showed the least stability. Finally, to validate the suitability of the selected reference genes, the relative expression level of IgTPS (beta-caryophyllene synthase) was assessed and highlighted the importance of suitable reference gene selection. This work constitutes the first systematic evaluation of potential reference genes in I. germanica and provides guidelines for future research on gene function and molecular mechanisms on I. germanica and related species.  相似文献   

2.
Normalisation to a reference gene is the most common method of internally controlling for error in quantitative PCR (qPCR) experiments. Studies based on qPCR in chickpea have been carried out using potential reference genes exclusively. Inappropriate normalisation may result in the acquisition of biologically irrelevant data. We have tested the expression of 12 candidate internal control genes in 36 samples representing different organs/developmental stages, genotypes and stress conditions. The most stably expressed genes were PUBQ, GAPDH, UBQ and bHLH, whereas 18S rRNA and EF-1a showed considerable regulation. The most suitable combination of reference genes for the particular experimental sets tested is provided. To illustrate the use of chickpea reference genes, we checked the expression of a putative defence gene in two different genotypes infected with Ascochyta rabiei (Pass.) Lab. The set of reference genes presented here will enable the more accurate and reliable normalisation of qPCR results for gene expression studies in this important legume crop. Our findings can be used as a starting point for reference gene selection in experimental conditions different from those tested here.  相似文献   

3.
4.
5.
6.
Eels are important aquaculture species for which an increasing number of reference genes are being identified and applied. In this study, five housekeeping genes [RPL7 (ribosomal protein L7), 18 S (18 S ribosomal RNA), EF1A (elongation factor 1α), ACTB (β-actin) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase)] were chosen to evaluate their reliability as reference genes for quantitative real-time PCR (qPCR) for the study of Anguilla anguilla. The expression of the selected genes in different eel tissues was determined using qPCR at different growth stages or upon challenge by Anguillid herpesvirus (AngHV), and the expression levels of these genes were then compared and evaluated using the geNorm and NormFinder algorithms. Then, RefFinder was used to comprehensively rank the examined housekeeping genes. Interestingly, the expression of the evaluated housekeeping genes exhibited tissue-dependent and treatment-dependent variations. In different growth periods A. anguilla tissues, the most stable genes were the following: ACTB in mucus; 18 S in skin and kidney; RPL7 in muscle, gill, intestine and brain; EF1A in heart and liver; and GAPDH in spleen. In contrast, in AngHV-challenged A. anguilla tissues, the most stable genes were the following: 18 S in mucus; RPL7 in skin, gill, heart, spleen, kidney and intestine; EF1A in muscle and liver; and ACTB in brain. Further comparison analysis indicated that the expression of RPL7 and EF1A was stable in multiple A. anguilla tissues in different growth periods and in eels challenged by AngHV. Nonetheless, the expression level of GAPDH in eel tissues was lower, and it was unstable in several tissues. These results indicated that the selection of reference genes for qPCR analysis in A. anguilla should be made in accordance with experimental parameters, and both RPL7 and EF1A could be used as reference genes for qPCR study of A. anguilla at different growth stages or upon challenge by AngHV. The reference genes identified in this study could improve the accuracy of qPCR data and facilitate further studies aimed at understanding the biology of eels.  相似文献   

7.
The expression level of mRNA can vary significantly in different experimental conditions, such as stress, infection, developmental stage or tissue. Suitable reference genes are expected to exhibit constant expression levels. However no single gene is constitutively expressed in all cell types and under all experimental conditions. It has become clear that expression stability of the intended reference gene has to be examined before each experiment. For expression studies using quantitative real-time PCR (qPCR) at least two reference genes have to be applied. So far expression studies in the European seabass (Dicentrarchus labrax) as well as in the Gilthead seabream (Sparus aurata) have been performed with only one reference gene (S18, Ef-1 alpha or Gapdh). Though significant variations showed up in other teleost species such as the Atlantic halibut and the zebrafish affirming the need for proper normalization strategies, the present study aims at identifying suitable reference genes among nine candidates [glyceraldehyde-phosphate-dehydrogenase (Gapdh), β-actin (two regions of β-actin), 40S ribosomal protein S30 (Fau), ribosomal protein L13 a (L13a), β2-tubulin (Tubb2) and tyrosine 3 monooxygenase/tryptophan 5-monooxygenase activation protein (Tyr)] for expression analysis of 8 developmental stages and a tissue panel (spleen, liver, kidney and brain) with samples infected with Nodavirus and Vibrio anguillarum in D. labrax. Besides the analysis of raw Ct-values, the gene expression stability was determined using two different software applications BestKeeper and NormFinder. According to both algorithms the best two reference genes for an appropriate normalization approach during D. labrax development are Ef-1 alpha and L13a whereas in the tissue panel Fau and L13a are recommended for qPCR normalization.  相似文献   

8.
Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions.  相似文献   

9.
To accurately measure gene expression using PCR-based approaches, there is the need for reference genes that have low variance in expression (housekeeping genes) to normalise the data for RNA quantity and quality. For non-model species such as Malus x domestica (apples), previously, the selection of reference genes relied on using homology to reference genes in model species. In this study, a genomics approach was used to identify apple genes with low variance in expression in 217 messenger RNA (mRNA)-seq data sets covering different tissues, during fruit development, and treated with a range of different stress conditions. Ten potential reference genes were chosen for validation by quantitative PCR (qPCR) over 29 different tissue types and treatments. From the combined mRNA-seq and qPCR results, three potential reference genes are proposed that can be used as good controls for PCR based expression studies. The three genes show homology to lipid transfer proteins, phytochrome protein phosphatase and the ubiquitination pathway. With the progression of research away from non-model species, this approach provides a robust method for selecting candidate genes for use as reference genes in qPCR.  相似文献   

10.
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.  相似文献   

11.
12.
Lactobacillus casei Zhang, a potential probiotic strain isolated from homemade koumiss in Inner Mongolia of China, has been sequenced and deposited in GenBank. Real-time quantitative PCR is one of the most widely used methods to study related gene expression levels of Lactobacillus casei Zhang. For accurate and reliable gene expression analysis, normalization of gene expression data using one or more appropriate reference genes is essential. We used three statistical methods (geNorm, NormFinder, and BestKeeper) to evaluate the expression levels of five candidate reference genes (GAPD, gyrB, LDH, 16s rRNA, and recA) under different culture conditions and different growth phases to find a suitable housekeeping gene which can be used as internal standard. The results showed that the best reference gene was GAPD, and a set of two genes, GAPD and gyrB (which were the most stable reference genes), is recommended for normalization of real-time quantitative PCR experiments under all the different experimental conditions tested. The systematic validation of candidate reference genes is important for obtaining reliable analysis results of real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang.  相似文献   

13.
Accuracy in quantitative real-time polymerase chain reaction (qPCR) requires the use of stable endogenous controls. Normalization with multiple reference genes is the gold standard, but their identification is a laborious task, especially in species with limited sequence information. Coffee (Coffea ssp.) is an important agricultural commodity and, due to its economic relevance, is the subject of increasing research in genetics and biotechnology, in which gene expression analysis is one of the most important fields. Notwithstanding, relatively few works have focused on the analysis of gene expression in coffee. Moreover, most of these works have used less accurate techniques such as northern blot assays instead of more accurate techniques (e.g., qPCR) that have already been extensively used in other plant species. Aiming to boost the use of qPCR in studies of gene expression in coffee, we uncovered reference genes to be used in a number of different experimental conditions. Using two distinct algorithms implemented by geNorm and Norm Finder, we evaluated a total of eight candidate reference genes (psaB, PP2A, AP47, S24, GAPDH, rpl39, UBQ10, and UBI9) in four different experimental sets (control versus drought-stressed leaves, control versus drought-stressed roots, leaves of three different coffee cultivars, and four different coffee organs). The most suitable combination of reference genes was indicated in each experimental set for use as internal control for reliable qPCR data normalization. This study also provides useful guidelines for reference gene selection for researchers working with coffee plant samples under conditions other than those tested here. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
The quantitative real-time PCR (qPCR) based techniques have become essential for gene expression studies and high-throughput molecular characterization of transgenic events. Normalizing to reference gene in relative quantification make results from qPCR more reliable when compared to absolute quantification, but requires robust reference genes. Since, ideal reference gene should be species specific, no single internal control gene is universal for use as a reference gene across various plant developmental stages and diverse growth conditions. Here, we present validation studies of multiple stably expressed reference genes in cultivated peanut with minimal variations in temporal and spatial expression when subjected to various biotic and abiotic stresses. Stability in the expression of eight candidate reference genes including ADH3, ACT11, ATPsyn, CYP2, ELF1B, G6PD, LEC and UBC1 was compared in diverse peanut plant samples. The samples were categorized into distinct experimental sets to check the suitability of candidate genes for accurate and reliable normalization of gene expression using qPCR. Stability in expression of the references genes in eight sets of samples was determined by geNorm and NormFinder methods. While three candidate reference genes including ADH3, G6PD and ELF1B were identified to be stably expressed across experiments, LEC was observed to be the least stable, and hence must be avoided for gene expression studies in peanut. Inclusion of the former two genes gave sufficiently reliable results; nonetheless, the addition of the third reference gene ELF1B may be potentially better in a diverse set of tissue samples of peanut.  相似文献   

16.
17.
18.
Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana, coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA, for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.  相似文献   

19.
Oxidative stress-induced dysfunction in trabecular meshwork (TM) cells is considered a major alteration that can lead to glaucoma. Hydrogen peroxide (H2O2) is the most widely used agent for inducing oxidation in TM cells in vitro. Quantitative real-time PCR (qPCR) is an important method for studying alterations in gene expression, and suitable (i.e. invariant) reference genes must be defined to normalize expression levels. In this study, eight common reference genes, i.e. PRS18, ACTB, B2M, GAPDH, PPIA, HPRT1, YWHAZ, and TBP, were evaluated for use in studies of H2O2-induced dysfunction in TM cells. Three established algorithms, geNorm, NormFinder, and BestKeeper, were used to analyze the reference genes. ACTB expression was least affected by H2O2 treatment in TM cells, and the combination of PPIA and HPRT1 was the most suitable gene pair for normalization. GAPDH and TBP were the most unstable genes and accordingly should be avoided in experiments with TM cells. These results provide a foundation for analyses of the mechanisms underlying glaucoma, and emphasize the importance of selecting suitable reference genes for qPCR studies.  相似文献   

20.

The normalization with proper reference genes is a crucial step to obtain accurate mRNA expression levels in quantitative PCR (qPCR) studies. Therefore, in this study, 10 reference candidate genes were evaluated to determine their stability in normal pectoralis major muscle of broilers and those counterparts affected with White Striping (WS) myopathy at 42 days age. Four different tools were used for ranking the most stable genes: GeNorm, NormFinder, BestKeeper and Comparative Ct (ΔCt), and a general ranking was performed using the RankAggreg tool to select the best reference genes among all tools. From the 10 genes evaluated in the breast muscle of broilers, 8 were amplified. Most of the algorithms/tools indicated the same two genes, RPL30 and RPL5, as the most stable in the broilers breast muscle. In addition, there was agreement among the tools for the least stable genes: MRPS27, GAPDH and RPLP1 in the broilers breast muscle. Therefore, it is interesting to note that even with different tools for evaluating gene expression, there was consensus on the most and least stable genes. These results indicate that the Ribosomal protein L30 (RPL30) and Ribosomal protein L5 (RPL5) can be recommended for accurate normalization in qPCR studies with chicken pectoralis major muscle affected with White Striping and other myopathies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号