首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Redox-switches are critical cysteine thiols that are modified in response to changes in the cell's environment conferring a functional effect. S-nitrosylation (SNO) is emerging as an important modulator of these regulatory switches; however, much remains unknown about the nature of these specific cysteine residues and how oxidative signals are interpreted. Because of their labile nature, SNO-modifications are routinely detected using the biotin switch assay. Here, a new isotope coded cysteine thiol-reactive multiplex reagent, cysTMT(6), is used in place of biotin, for the specific detection of SNO-modifications and determination of individual protein thiol-reactivity. S-nitrosylation was measured in human pulmonary arterial endothelia cells in vitro and in vivo using the cysTMT(6) quantitative switch assay coupled with mass spectrometry. Cell lysates were treated with S-nitrosoglutathione and used to identify 220 SNO-modified cysteines on 179 proteins. Using this approach it was possible to discriminate potential artifacts including instances of reduced protein disulfide bonds (6) and S-glutathionylation (5) as well as diminished ambiguity in site assignment. Quantitative analysis over a range of NO-donor concentrations (2, 10, 20 μm; GSNO) revealed a continuum of reactivity to SNO-modification. Cysteine response was validated in living cells, demonstrating a greater number of less sensitive cysteine residues are modified with increasing oxidative stimuli. Of note, the majority of available cysteines were found to be unmodified in the current treatment suggesting significant additional capacity for oxidative modifications. These results indicate a possible mechanism for the cell to gauge the magnitude of oxidative stimuli through the progressive and specific accumulation of modified redox-switches.  相似文献   

2.
Templeton DJ  Aye MS  Rady J  Xu F  Cross JV 《PloS one》2010,5(11):e15012
Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.  相似文献   

3.
One of the most popular and simple models for the calculation of pKas from a protein structure is the semi‐macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The effects of prior covalent cysteine modification or nonspecific DNA presence on the reaction of lac repressor protein with N-bromosuccinimide have been investigated. At low excesses, N-bromosuccinimide oxidation causes loss of operator DNA binding activity with simultaneous retention of inducer and nonspecific DNA binding activities. Cysteine and methionine are oxidized under the conditions utilized. Covalent modification of the cysteines of repressor prior to reaction decreased the observed loss of operator DNA binding capacity; the presence of nonspecific DNA partially prevented oxidation of the cysteines by N-bromosuccinimide, and concurrent protection of operator binding ability was observed. Methionine oxidation was observed in the cases where protection of the operator DNA binding capacity of repressor was seen. The region surrounding cysteine 107 was found to be influential in maintaining intact operator DNA binding function in repressor. This observation provides chemical evidence for the contribution of the core region of repressor in determining specificity of the protein in binding the lac operator. The protection from oxidation of cysteine residues in the core region by the presence of nonspecific DNA suggests that this binding influences the core region of the protein.  相似文献   

5.
Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function.  相似文献   

6.
Jacob MH  Amir D  Ratner V  Gussakowsky E  Haas E 《Biochemistry》2005,44(42):13664-13672
A variety of biophysical methods used to study proteins requires protein modification using conjugated molecular probes. Cysteine is the main residue that can be modified without the risk of altering other residues in the protein chain. It is possible to label several cysteines in a protein using highly selective labeling reactions, if the cysteines react at very different rates. The reactivity of a cysteine residue introduced into an exposed surface site depends on the fraction of cysteine in the deprotonated state. Here, it is shown that cysteine reactivity differences can be effectively predicted by an electrostatic model that yields site-specifically the fractions of cysteinate. The model accounts for electrostatic interactions between the cysteinyl anion and side chains, the local protein backbone, and water. The energies of interaction with side chains and the main chain are calculated by using the two different dielectric constants, 40 and 22, respectively. Twenty-six mutants of Escherichia coli adenylate kinase were produced, each containing a single cysteine at the protein surface, and the rates of the reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) were measured. Cysteine residues were chosen on the basis of locations that were expected to allow modification of the protein with minimal risk of perturbing its structure. The reaction rates spanned a range of 6 orders of magnitude. The correlation between predicted fractions of cysteinate and measured reaction rates was strong (R = 92%) and especially high (R = 97%) for cysteines at the helix termini. The approach developed here allows reasonably fast, automated screening of protein surfaces to identify sites that permit efficient preparations of double- or triple-labeled protein.  相似文献   

7.
IscA/SufA proteins belong to complex protein machineries which are involved in iron-sulfur cluster biosynthesis. They are defined as scaffold proteins from which preassembled clusters are transferred to target apoproteins. The experiments described here demonstrate that the transfer reaction proceeds in two observable steps: a first fast one leading to a protein–protein complex between the cluster donor (SufA/IscA) and the acceptor (biotin synthase), and a slow one consisting of cluster transfer leading to the apoform of the scaffold protein and the holoform of the target protein. Mutation of cysteines in the acceptor protein specifically inhibits the second step of the reaction, showing that these cysteines are involved in the cluster transfer mechanism but not in complex formation. No cluster transfer from IscA to IscU, another scaffold of the isc operon, could be observed, whereas IscU was shown to be an efficient cluster source for cluster assembly in IscA. Implications of these results are discussed.Abbreviations AdoMet S-adenosylmethionine - APS adenosine-5-phosphosulfate - BioB biotin synthase - DAF deazaflavin - DTB dethiobiotin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - hisIscU/A six histidine residues at the N-terminus of IscU/A - PCR polymerase chain reaction - PLP pyridoxal 5-phosphate - SufAhis six histidine residues at the C-terminus of SufA  相似文献   

8.
Signaling by reactive oxygen species has emerged as a major physiological process. Due to its high metabolic rate, striated muscle is especially subject to oxidative stress, and there are multiple examples in cardiac and skeletal muscle where oxidative stress modulates contractile function. Here we assessed the potential of cysteine oxidation as a mechanism for modulating contractile function in skeletal and cardiac muscle. Analyzing the cysteine content of the myofilament proteins in striated muscle, we found that cysteine residues are relatively rare, but are very similar between different muscle types and different vertebrate species. To refine this list of cysteines to those that may modulate function, we estimated the accessibility of oxidants to cysteine residues using protein crystal structures, and then sharpened these estimates using fluorescent labeling of cysteines in cardiac and skeletal myofibrils. We demonstrate that cysteine accessibility to oxidants and ATPase rates depend on the contractile state in which preparations are exposed. Oxidant exposure of skeletal and cardiac myofibrils in relaxing solution exposes myosin cysteines not accessible in rigor solution, and these modifications correspond to a decrease in maximum ATPase. Oxidant exposure under rigor conditions produces modifications that increase basal ATPase and calcium sensitivity in ventricular myofibrils, but these effects were muted in fast twitch muscle. These experiments reveal how structural and sequence variations can lead to divergent effects from oxidants in different muscle types.  相似文献   

9.
The unique combination of nucleophilicity and redox-sensitivity that is characteristic of cysteine residues results in a variety of posttranslational modifications (PTMs), including oxidation, nitrosation, glutathionylation, prenylation, palmitoylation and Michael adducts with lipid-derived electrophiles (LDEs). These PTMs regulate the activity of diverse protein families by modulating the reactivity of cysteine nucleophiles within active sites of enzymes, and governing protein localization between soluble and membrane-bound forms. Many of these modifications are highly labile, sensitive to small changes in the environment, and dynamic, rendering it difficult to detect these modified species within a complex proteome. Several chemical-proteomic platforms have evolved to study these modifications and enable a better understanding of the diversity of proteins that are regulated by cysteine PTMs. These platforms include: (1) chemical probes to selectively tag PTM-modified cysteines; (2) differential labeling platforms that selectively reveal and tag PTM-modified cysteines; (3) lipid, isoprene and LDE derivatives containing bioorthogonal handles; and (4) cysteine-reactivity profiling to identify PTM-induced decreases in cysteine nucleophilicity. Here, we will provide an overview of these existing chemical-proteomic strategies and their effectiveness at identifying PTM-modified cysteine residues within native biological systems.  相似文献   

10.
Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom’s chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped 13Cβ chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding 13Cα chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 13Cα/13Cβ shift pairs from 79 proteins with known three-dimensional structures, including 86 13Cα and13Cβ shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statisical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron–sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into the frequency of occurrence of non-cysteine Zn ligands, we analyzed the Protein Data Bank and found that 78% of the Zn ligands are histidine and cysteine (with nearly identical frequencies), and 18% are acidic residues aspartate and glutamate. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
Ceramide kinase (CerK) is a sphingolipid metabolizing enzyme very sensitive to oxidation; however, the determinants are unknown. We show here that the thiol-modifying agent N-ethyl-maleimide abrogates CerK activity in vitro and in a cell based assay, implying that important cysteine residues are accessible in purified as well as endogenous CerK. We replaced every 22 residues in human CerK, by an alanine, and measured activity in the resulting mutant proteins. This led to identification of a cluster of cysteines, C(347)XXXC(351)XXC(354), essential for CerK function. These findings are discussed based on homology modeling of the catalytic domain of CerK.  相似文献   

12.
13.
Binding of the chloroplast poly(A)-binding protein, RB47, to the psbA mRNA is regulated in response to light and is required for translation of this mRNA in chloroplasts. The RNA binding activity of RB47 can be modulated in vitro by oxidation and reduction. Site-directed mutations to individual cysteine residues in each of the four RNA binding domains of RB47 showed that changing single cysteines to serines in domains 2 or 3 reduced, but did not eliminate, the ability of RB47 to be redox-regulated. Simultaneously changing cysteines to serines in both domains 2 and 3 resulted in the production of RB47 protein that was insensitive to redox regulation but retained the ability to bind the psbA mRNA at high affinity. The poly(A)-binding protein from Saccharomyces cerevisiae lacks cysteine residues in RNA binding domains 2 and 3, and this poly(A)-binding protein lacks the ability to be regulated by oxidation or reduction. These data show that disulfide bond formation between RNA binding domains in a poly(A)-binding protein can be used to regulate the ability of this protein to bind mRNA and suggest that redox regulation of RNA binding activity may be used to regulate translation in organisms whose poly(A)-binding proteins contain these critical cysteine residues.  相似文献   

14.
15.
The guanine nucleotide-binding proteins which mediate hormonal inhibition of adenylate cyclase as well as hormonal regulation of other membrane functions are alpha, beta, and gamma heterotrimers which are structurally homologous to each other. In brain, the predominant guanine nucleotide-binding component is a 39-kDa protein whose physiological role is as yet unknown. We have used N-ethylmaleimide to define functionally important sulfhydryl groups on alpha 39. Three cysteine residues in the molecule are reactive in unliganded alpha 39. Alkylation of two of these is reduced when guanosine 5'-(3'-O-thio)triphosphate (GTP gamma S) is bound. We have isolated and sequenced tryptic peptides containing the three reactive cysteines. The octapeptide containing the GTP gamma S-insensitive cysteine is at a position equivalent to amino acids 106-113 of the transducin alpha subunit (Lochrie, M. A., Hurley, J. B., and Simon, M. I. (1985) Science 228, 96-99). However, the equivalent peptide in transducin does not contain a cysteine residue. Alkylation of this cysteine blocks ADP-ribosylation of cysteine 351 by pertussis toxin. However, alkylation does not prevent association of alpha with the beta X gamma subunits nor does it inhibit GTPase activity. The two GTP gamma S-sensitive cysteines are at positions equivalent to cysteines 139 and 286 of the transducin alpha subunit. Alkylation of these residues inhibits GTPase activity. Neither of these GTP gamma S-sensitive cysteines are in those regions of alpha 39 which are highly homologous to the GTP-binding site of elongation factor Tu (Jurnak, F. (1985) Science 230, 32-36). However, both are present in the brain 41-kDa guanine nucleotide-binding protein and in the two transducins. The conservation of these cysteine residues suggests that they are important for the function of the subunits.  相似文献   

16.
The primary amino acid sequence of an abundant methionine-rich seed protein found in Brazil nut (Bertholletia excelsa H.B.K.) has been elucidated by protein sequencing and from the nucleotide sequence of cDNA clones. The 9 kDa subunit of this protein was found to contain 77 amino acids of which 14 were methionine (18%) and 6 were cysteine (8%). Over half of the methionine residues in this subunit are clustered in two regions of the polypeptide where they are interspersed with arginine residues. In one of these regions, methionine residues account for 5 out of 6 amino acids and four of these methionine residues are contiguous. The sequence data verifies that the Brazil nut sulfur-rich protein is synthesized as a precursor polypeptide that is considerably larger than either of the two subunits of the mature protein. Three proteolytic processing steps by which the encoded polypeptide is sequentially trimmed to the 9 kDa and 3 kDa subunit polypeptides have been correlated with the sequence information. In addition, we have found that the sulfur-rich protein from Brazil nut is homologous in its amino acid sequence to small water-soluble proteins found in two other oilseeds, castor bean (Ricinus communis) and rapeseed (Brassica napus). When the amino acid sequences of these three proteins are aligned to maximize homology, the arrangement of cysteine residues is conserved. However, the two subunits of the Brazil nut protein contain over 19% methionine whereas the homologous proteins from castor bean and rapeseed contain only 2.1% and 2.6% methionine, respectively.  相似文献   

17.
Redox proteomics: identification of oxidatively modified proteins   总被引:2,自引:0,他引:2  
Ghezzi P  Bonetto V 《Proteomics》2003,3(7):1145-1153
Reactive oxygen and nitrogen species may cause various types of chemical modifications on specific proteins, Such modifications if irreversible are often associated with permanent loss of function and may lead to the elimination or to the accumulation of the damaged proteins. Reversible modifications, particularly at the cysteine residues, may have a dual role of protection from cysteine irreversible oxidation and modulation of protein function (redox regulation). Here we will review the techniques available for identifying proteins based on their redox state. In particular, we will focus on protein carbonylation, tyrosine nitration and thiol-disulfide chemistry of cysteines, with special emphasis on glutathionylation, because these are the fields where the tools of proteome analysis have been applied.  相似文献   

18.
Thiol-dependent redox systems are involved in regulation of diverse biological processes, such as response to stress, signal transduction, and protein folding. The thiol-based redox control is provided by mechanistically similar, but structurally distinct families of enzymes known as thiol oxidoreductases. Many such enzymes have been characterized, but identities and functions of the entire sets of thiol oxidoreductases in organisms are not known. Extreme sequence and structural divergence makes identification of these proteins difficult. Thiol oxidoreductases contain a redox-active cysteine residue, or its functional analog selenocysteine, in their active sites. Here, we describe computational methods for in silico prediction of thiol oxidoreductases in nucleotide and protein sequence databases and identification of their redox-active cysteines. We discuss different functional categories of cysteine residues, describe methods for discrimination between catalytic and noncatalytic and between redox and non-redox cysteine residues and highlight unique properties of the redox-active cysteines based on evolutionary conservation, secondary and three-dimensional structures, and sporadic replacement of cysteines with catalytically superior selenocysteine residues.  相似文献   

19.
Lactose repressor protein has been modified with N-ethylmaleimide, two N-maleimide spin labels, and an N-maleimide fluorophore. The reaction with repressor cysteine residues has been characterized. Approximately 2 of the 3 eq of cysteine/repressor monomer are reactive toward these reagents. Repressor cysteines are reactive toward these reagents in the order cysteine 140 greater than or equal to cysteine 107 greater than cysteine 281. The reaction is sulfhydryl-specific. Comparison of chemical modification data obtained in this laboratory using a variety of sulfhydryl-specific reagents has been used to assess chemical features of individual cysteine environments. Effects of the maleimide reagents on biological activity have been determined. Only the fluorophore N-(3-pyrene)maleimide has significant effect; this agent selectively perturbs repressor's ability to bind to operator DNA. This result suggests that regions of protein structure surrounding 1 or more of the cysteine residues possess determinants required for normal operator DNA binding.  相似文献   

20.
Substitution of alanine for cysteine residues of the human immunodeficiency virus type 1 LAI (BRU) and ELI Nef proteins was used to determine pairing of the cysteine residues present in each protein. The results show that under nonreducing conditions, alternative pairing of the cysteines occurs. The preferred pairing of cysteine residues of the LAI and ELI proteins differs. In the experimental system used, viruses carrying the ELI nef allele are found to express Nef proteins which accelerate virus replication. Mutation in critical cysteine residues of the protein reduce the rate of virus replication. In the same system, viruses harboring the LAI nef allele fail to replicate. These observations raise the possibility that differences in the observed biological activity of nef alleles may be attributed, at least in part, to differences in the secondary structure of the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号