首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A double-stranded calf thymus DNA (dsDNA) was physisorbed onto a polypyrrole (PPy) nanofiber film that had been electrochemically deposited onto a Pt electrode. The surface morphology of the polymeric film was characterized using scanning electron microscopy (SEM). The electrochemical characteristics of the PPy film and the DNA deposited onto the PPy modified electrode were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Then the interaction of DNA with salicylic acid (SA) and acetylsalicylic acid (ASA), or aspirin, was studied on the electrode surface with DPV. An increase in the DPV current was observed due to the oxidation of guanine, which decreased with the increasing concentrations of the ligands. The interactions of SA and ASA with the DNA follow the saturation isotherm behavior. The binding constants of these interactions were 1.15 × 104 M for SA and 7.46 × 105 M for ASA. The numbers of binding sites of SA and ASA on DNA were approximately 0.8 and 0.6, respectively. The linear dynamic ranges of the sensors were 0.1–2 μM (r2 = 0.996) and 0.05–1 mM (r2 = 0.996) with limits of detection of 8.62 × 10−1 and 5.24 × 10−6 μM for SA and ASA, respectively.  相似文献   

2.
Hollow nitrogen-doped carbon microspheres (HNCMS) as a novel carbon material have been prepared and the catalytic activities of HNCMS-modified glassy carbon (GC) electrode towards the electro-oxidation of uric acid (UA), ascorbic acid (AA) and dopamine (DA) have also been investigated. Comparing with the bare GC and carbon nanotubes (CNTs) modified GC (CNTs/GC) electrodes, the HNCMS modified GC (HNCMS/GC) electrode has higher catalytic activities towards the oxidation of UA, AA and DA. Moreover, the peak separations between AA and DA, and DA and UA at the HNCMS/GC electrode are up to 212 and 136 mV, respectively, which are superior to those at the CNTs/GC electrode (168 and 114 mV). Thus the simultaneous determination of UA, AA and DA was carried out successfully. In the co-existence system of UA, AA and DA, the linear response range for UA, AA and DA are 5-30 μM, 100-1000 μM and 3-75 μM, respectively and the detection limits (S/N = 3) are 0.04 μM, 0.91 μM and 0.02 μM, respectively. Meanwhile, the HNCMS/GC electrode can be applied to measure uric acid in human urine, and may be useful for measuring abnormally high concentration of AA or DA. The attractive features of HNCMS provide potential applications in the simultaneous determination of UA, AA and DA.  相似文献   

3.
A novel biosensor has been constructed by the electrodeposition of Au-nanoclusters (nano-Au) on poly(3-amino-5-mercapto-1,2,4-triazole) (p-TA) film modified glassy carbon electrode (GCE) and employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA), uric acid (UA) and nitrite (NO2). NH2 and SH groups exposed to the p-TA layer are helpful for the electrodeposition of nano-Au. The combination of nano-Au and p-TA endow the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity and flexible and controllable electrodeposition process. In the fourfold co-existence system, the linear calibration plots for AA, DA, UA and NO2 were obtained over the range of 2.1–50.1 μM, 0.6–340.0 μM, 1.6–110.0 μM and 15.9–277.0 μM with detection limits of 1.1 × 10−6 M, 5.0 × 10−8 M, 8.0 × 10−8 M and 8.9 × 10−7 M, respectively. In addition, the modified biosensor was applied to the determination of AA, DA, UA and NO2 in urine and serum samples by using standard adding method with satisfactory results.  相似文献   

4.
A disposable and sensitive screen-printed electrode using an ink containing graphene was developed. This electrode combined the advantages of graphene and the disposable characteristic of electrode, which possessed wide potential window, low background current and fast electron transfer kinetics. Compared with the electrodes made from other inks, screen-printed graphene electrode (SPGNE) showed excellent electrocatalytic activity for the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Three well-defined sharp and fully resolved anodic peaks were found at the developed electrode. Differential pulse voltammetry was used to simultaneous determination of AA, DA, and UA in their ternary mixture. In the co-existence system of these three species, the linear response ranges for the determination of AA, DA, and UA were 4.0-4500 μM, 0.5-2000 μM, and 0.8-2500 μM, respectively. The detection limits (S/N=3) were found to be 0.95 μM, 0.12 μM, and 0.20 μM for the determination of AA, DA, and UA, respectively. Furthermore, the SPGNE displayed high reproducibility and stability for these species determination. The feasibility of the developed electrode for real sample analysis was investigated. Results showed that the SPGNE could be used as a sensitive and selective sensor for simultaneous determination of AA, DA, and UA in biological samples, which may provide a promising alternative in routine sensing applications.  相似文献   

5.
After cultivation on (R,S)‐2‐(2,4‐dichlorophenoxy)propionate, two α‐ketoglutarate‐dependent dioxygenases were isolated and purified from Delftia acidovorans MC1, catalysing the cleavage of the ether bond of various phenoxyalkanoate herbicides. One of these enzymes showed high specificity for the cleavage of the R‐enantiomer of substituted phenoxypropionate derivatives: the Km values were 55 μM and 30 μM, the kcat values 55 min–1 and 34 min–1 with (R)‐2‐(2,4‐dichlorophenoxy)propionate [(R)‐2,4‐DP] and (R)‐2‐(4‐chloro‐2‐methylphenoxy)propionate, respectively. The other enzyme predominantly utilised the S‐enantiomers with Km values of 49 μM and 22 μM, and kcat values of 50 min–1 and 46 min–1 with (S)‐2‐(2,4‐dichlorophenoxy)propionate [(S)‐2,4‐DP] and (S)‐2‐(4‐chloro‐2‐methylphenoxy)propionate, respectively. In addition, it cleaved phenoxyacetate herbicides (i.e. 2,4‐dichlorophenoxyacetate: Km = 123 μM, kcat = 36 min–1) with significant activity. As the second substrate, only α‐ketoglutarate served as an oxygen acceptor for both enzymes. The enzymes were characterised by excess substrate inhibition kinetics with apparent Ki values of 3 mM with (R)‐2,4‐DP and 1.5 mM with (S)‐2,4‐DP. The reaction was strictly dependent on the presence of Fe2+ and ascorbate; other divalent cations showed inhibitory effects to different extents. Activity was completely extinguished within 2 min in the presence of 100 μM diethylpyrocarbonate (DEPC).  相似文献   

6.
This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO]3−/[Fe(CN)5NO]2− and PbIV/PbII redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of l-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of l-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with l-cysteine concentration in the range of 1 × 10−6 to 6.72 × 10−5 mol L−1 with a detection limit (signal/noise ratio [S/N] = 3) of 0.46 μM. The sensor sensitivity was 0.17 μA (μM)−1, and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of l-cysteine were achieved.  相似文献   

7.
Arachidonic acid (AA) plays important physiological or pathophysiological roles. Here, we show in cultured rat astrocytes that: (i) endothelin-1 or thapsigargin (Tg) induces store-depleted activated Ca2+ entry (CCE), which is inhibited by 2-aminoethoxydiphenyl borane (2-APB) or La3+; (ii) AA (10 μM) and other unsaturated fatty acids (8,11,14-eicosatrienoic acid and γ-linoleic acid) have an initial inhibitory effect on the CCE, due to AA- or fatty acid-induced internal acid load; (iii) after full activation of CCE, AA induces a further Ca2+ influx, which is not inhibited by 2-APB or La3+, indicating that AA activates a second Ca2+ entry pathway, which coexists with CCE; and (iv) Tg or AA activates two independent and co-existing non-selective cation channels and the Tg-induced currents are initially inhibited by addition of AA or weak acids. A possible pathophysiological effect of the AA-induced [Ca]i overload is to cause delayed cell death in astrocytes.  相似文献   

8.
Cadmium (Cd) is a critical environmental chemical in which sorption reactions control its entry into soil solution. The aim of the present study was to evaluate Cd sorption characteristics of some soils of the northern part of Iran with a wide range of physicochemical properties. Duplicates of each sample were equilibrated with solutions containing 5 to 500 mg Cd L?1 with 0.01 M CaCl2 as background solution. The quantity of Cd retention was calculated as the difference between initial and equilibrated Cd concentration. Sorption isotherms including Freundlich, Langmuir, Temkin, Dubinin-Radushkevich, and Redlich-Peterson were used to evaluate the behavior of Cd sorption. Cadmium sorption data were well fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms. The constant of Freundlich equation (kF ) and adsorption maxima (bL ) of Langmuir equation were related to pH and cation exchange capacity (CEC). The maximum buffering capacity (Kd ) was significantly correlated with pH (R2 = 0.52, p ≤ 0.001) and calcium carbonate equivalent (CCE) (R2 = 0.63, p ≤ 0.001). Redlich-Peterson constants (kRP and aRP ) were significantly correlated with pH (R2 kRP = 0.30, p ≤ 0.007) and (R2 aRP = 0.27, p ≤ 0.012). It seemed that pH, CEC, and CCE were the main soil properties regulating Cd retention behavior of the studied soils.  相似文献   

9.
Polydopamine (Pdop) has recently been shown to adsorb to a wide variety of surfaces and serves as an adhesion layer to immobilize biological molecules. In this work, the multifunctional carbon nanotube (CNT) composites were prepared though the oxidation of dopamine at room temperature and subsequent electroless silver deposition by mildly stirring. The stable immobilization and direct electron transfer of glucose oxidase were achieved on the composite film modified glassy carbon electrode. The resulting electrode gave a well-defined redox peaks with a formal potential of about −482 mV (vs. SCE) in pH 7.0 buffer. The electron transfer rate constant was estimated to be 3.6 s−1, due to the combined contribution of Pdop, CNTs and Ag nanoparticles with the help of Nafion. Furthermore, the method for detecting of glucose was proposed based on the decrease of oxygen caused by the enzyme-catalyzed reaction between glucose oxidase (GOD) and glucose. The linear response to glucose ranging from 50.0 μM to 1.1 mM (R2 = 0.9958), with a calculated detection limit of 17.0 μM at a signal-to-noise ratio of 3. The low calculated apparent Michaelis–Menten constant was 5.46 mM, implying the high enzymatic activity and affinity of immobilized GOD for glucose. It can reasonably be expected that this observation might hold true for other noble metal nanostructure-electroactive protein systems, providing a promising platform for the development of biosensors and biofuel cells.  相似文献   

10.
Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of −62 and −60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1 M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 × 10−6 to 9.6 × 10−4 M, 1.5 × 10−5 to 2.4 × 10−4 M, and 5.0 × 10−5 to 8 × 10−4 M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.  相似文献   

11.
An interesting electrochemical sensor has been constructed by the electrodeposition of palladium nanoclusters (Pdnano) on poly(N-methylpyrrole) (PMPy) film-coated platinum (Pt) electrode. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy were used to characterize the properties of the modified electrode. It was demonstrated that the electroactivity of the modified electrode depends strongly on the electrosynthesis conditions of the PMPy film and Pdnano. Moreover, the modified electrode exhibits strong electrocatalytic activity toward the oxidation of a mixture of dopamine (DA), ascorbic acid (AA), and uric acid (UA) with obvious reduction of overpotentials. The simultaneous analysis of this mixture at conventional (Pt, gold [Au], and glassy carbon) electrodes usually struggles. However, three well-resolved oxidation peaks for AA, DA, and UA with large peak separations allow this modified electrode to individually or simultaneously analyze AA, DA, and UA by using differential pulse voltammetry (DPV) with good stability, sensitivity, and selectivity. This sensor is also ideal for the simultaneous analysis of AA, UA and either of epinephrine (E), norepinephrine (NE) or l-DOPA. Additionally, the sensor shows strong electrocatalytic activity towards acetaminophen (ACOP) and other organic compounds. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.05 to 1 mM, 0.1 to 10 μM, and 0.5 to 20 μM, respectively. The detection limits (signal/noise [S/N] = 3) were 7 μM, 12 nM, and 27 nM for AA, DA, and UA, respectively. The practical application of the modified electrode was demonstrated by measuring the concentrations of AA, DA, and UA in injection sample, human serum, and human urine samples, respectively, with satisfactory results. The reliability and stability of the modified electrode gave a good possibility for applying the technique to routine analysis of AA, DA, and UA in clinical tests.  相似文献   

12.
A series of new monophosphates of 1-[2-(phosphonomethoxy)alkyl]thymines, such as PMPTp, 3-MeO-PMPTp, HPMPTp, and FPMPTp, were synthesized and tested for their ability to inhibit human thymidine phosphorylase. Kinetic measurements of enzyme activity were performed using thymidine and inorganic phosphate as the substrates. The data show that some monophosphates provide a considerable increase of the multisubstrate inhibitory effect. The highest inhibitory potency was found with (R)-FPMPTp 4c (K i dT = 4.09 ± 0.47 μM, K i(Pi) = 2.13 ± 0.29 μM) and (R) 3-MeO-PMPTp 4d (K i dT = 5.78 ± 0.71 μM, K i(Pi) = 2.71 ± 0.37 μM).  相似文献   

13.
The evaluation of a novel modified glassy carbon electrode modified with iron ion-doped natrolite zeolite-multiwalled carbon nanotube for the simultaneous and sensitive determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) has been described. The measurements were carried out using cyclic voltammetry in buffer solution with pH 1. This modified electrode exhibits potent and persistent electroxidation behavior followed by well-separated oxidation peaks towards AA, DA, UA and Trp with increasing of the oxidation current. For the quaternary mixture containing AA, DA, UA and Trp, the 4 compounds can well separate from each other at the scan rate of 100 mVs(-1) with a potential difference of 270 mV, 150 mV and 260 mV for the oxidation peak potentials of AA-DA, DA-UA and UA-Trp, respectively, which was large enough to simultaneous determine AA, DA, UA and Trp. The catalytic peak current obtained, was linearly dependent on the AA, DA, UA and Trp concentrations in the range of 7.77-833 μM, 7.35-833 μM, 0.23-83.3 μM and 0.074-34.5 μM and the detection limits for AA, DA, UA and Trp were 1.11, 1.05, 0.033 and 0.011 μM, respectively. The analytical performance of this sensor has been evaluated for simultaneous detection of AA, DA, UA and Trp in human serum and urine samples.  相似文献   

14.
This paper demonstrated the selective determination of folic acid (FA) in the presence of important physiological interferents, ascorbic acid (AA) and uric acid (UA) at physiological pH using electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole (p-AMT) modified glassy carbon (GC) electrode. Bare GC electrode fails to determine the concentration of FA in the presence of AA and UA due to the surface fouling caused by the oxidized products of AA and FA. However, the p-AMT film modified electrode not only separates the voltammetric signals of AA, UA and FA with potential differences of 170 and 410 mV between AA–UA and UA–FA, respectively but also shows higher oxidation current for these analytes. The p-AMT film modified electrode displays an excellent selectivity towards the determination of FA even in the presence of 200-fold AA and 100-fold UA. Using amperometric method, we achieved the lowest detection of 75 nM UA and 100 nM each AA and FA. The amperometric current response was increased linearly with increasing FA concentration in the range of 1.0 × 10−7–8.0 × 10−4 M and the detection limit was found to be 2.3 × 10−10 M (S/N = 3). The practical application of the present modified electrode was successfully demonstrated by determining the concentration of FA in human blood serum samples.  相似文献   

15.
Growth rates of two clones of the freshwater planktonic diatom Asterionella formosa Hass. were measured under conditions in which external silicon concentrations controlled growth. Clone AfOH2 from Lake Ohrid, Yugoslavia, had a higher maximum growth rate (μmax= 1.11 doublings/day) and apparent half-saturation constant (Ksi] + Sio= 1.93 μM Si) than clone L262 from Lake Windermere, England. (μmax= 0.61 doublings/day; Ksi+ Sio= 1.09 μM Si). Klim, the silicon concentration at μ= 0.9 μmax, is 13.8 μM Si for clone AfOH2 and 6.5 μM Si for clone L262. These values agree well with published field observations showing A. formosa populations decreasing below 0.5 mg/l SiO2 (= 8.4 μM Si). Calculations of yield gave a range of 0.5–1.5 μM Si/106 cells for clone AfOH2 and 0.6–1.9 μM Si/106 cells for clone L262.  相似文献   

16.
17.
A nonenzymatic electrochemical sensor device was fabricated for glucose detection based on nickel nanoparticles (NiNPs)/straight multi-walled carbon nanotubes (SMWNTs) nanohybrids, which were synthesized through in situ precipitation procedure. SMWNTs can be easily dispersed in solution after mild sonication pretreatment, which facilitates the precursor of NiNPs binding to their surface and results in the homogeneous distribution of NiNPs on the surface of SMWNTs. The morphology and component of the nanohybrids were characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD), respectively. Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNPs/SMWNTs nanohybrids modified electrode towards glucose. It was found that the nanohybrids modified electrode showed remarkably enhanced electrocatalytic activity towards the oxidation of glucose in alkaline solution compared to that of the bare glass carbon electrode (GCE), the NiNPs and the SMWNTs modified electrode, attributing to the synergistic effect of SMWNTs and Ni2+/Ni3+ redox couple. Under the optimal detection conditions, the as-prepared sensors exhibited linear behavior in the concentration range from 1 μM to 1 mM for the quantification of glucose with a limit of detection of 500 nM (3σ). Moreover, the NiNPs/SMWNTs modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA), galactose (GA), and xylose (XY). The robust selectivities, sensitivities, and stabilities determined experimentally indicated the great potential of NiNPs/SMWNTs nanohybrids for construction of a variety of electrochemical sensors.  相似文献   

18.
The mononuclear dipeptide‐based CuII complexes [CuII(trp‐phe)(phen)(H2O)] ⋅ ClO4 ( 1 ) and [CuII(trp‐phe)(bpy)(H2O)] ⋅ ClO4 ( 2 ) (trp‐phe=tryptophanphenylalanine, phen=1,10‐phenanthroline, bpy=2,2′‐bipyridine) were isolated, and their interaction with DNA was studied. They exhibit intercalative mode of interaction with DNA. The intercalative interaction was quantified by Stern Volmer quenching constant (Ksq=0.14 for 1 and 0.08 for 2 ). The CuII complexes convert supercoiled plasmid DNA into its nicked circular form hydrolytically at physiological conditions at a concentration as low as 5 μM (for 1 ) and 10 μM (for 2 ). The DNA hydrolysis rates at a complex concentration of 50 μM were determined as 1.74 h−1 (R=0.985) for 1 and 0.65 h−1 (R=0.965) for 2 . The rate enhancement in the range of 2.40–4.10×107‐fold compared to non‐catalyzed double‐stranded DNA is significant. This was attributed to the presence of a H2O molecule in the axial position of the Cu complexes.  相似文献   

19.
An enzyme electrode was prepared with acid phosphatase (ACP) for development of a new electric power generation system using ascorbic acid 2-phosphate (AA2P) as a fuel. The properties of the electrode were investigated with respect to biocatalytic dephosphorylation of AA2P and electrochemical oxidation of resulting ascorbic acid (AA). The enzyme electrode was fabricated by immobilization of ACP through amide linkage onto a self-assembled monolayer of 3-mercaptopropionic acid on a gold electrode. AA2P was not oxidized on a bare gold electrode in the potential sweep range from -0.1 to +0.5 V vs. Ag/AgCl. However, the enzyme electrode gave an oxidation current in citric buffer solution of pH 5 containing 10 mM of AA2P. The oxidation current began to increase at +0.2V, and reached to 5.0 μA cm(-2) at +0.5 V. The potential +0.2 V corresponded to the onset of oxidation of ascorbic acid (AA). These results suggest that the oxidation current observed with the enzyme electrode is due to AA resulting from dephosphorylation of AA2P. The oxidation current increased with increasing concentration of AA2P and almost leveled off at around the concentration of 5mM. Thus the enzyme electrode brought about biocatalytic conversion of AA2P to AA, followed by electrochemical oxidation of the AA. The oxidation current is likely to be controlled by the biocatalytic reaction.  相似文献   

20.
This work describes a new electrochemical sensor for hydrogen peroxide based on tin pentacyanonitrosylferrate (SnPCNF)-modified carbon ceramic electrode (CCE). The modified electrode was constructed by using a sol-gel technique involving two steps: construction of CCE containing metallic tin (Sn) powder and then electrochemical creation of SnPCNF film on the surface of CCE. The modified electrode was characterized by energy-dispersive X-ray, Fourier transform infrared, scanning electron microscopy, and cyclic voltammetry (CV) techniques. The charge transfer coefficient (α) and charge transfer rate constant (ks) for the modifying film were calculated. The electrocatalytic activity of the modified electrode toward the reduction of hydrogen peroxide was studied by CV and chronoamperometry. A linear calibration curve was obtained over the hydrogen peroxide concentration range of 0.5 to 69.4 μM using a hydrodynamic amperometric technique. The limit of detection (for a signal-to-noise ratio of 3) and sensitivity were found to be 92 nM and 0.89 μA/μM, respectively. Furthermore, the diffusion coefficient of hydrogen peroxide (D) and catalytic rate constant (kcat) were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号