首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The binding affinity and specificity of the mushroom Polyporus squamosus lectin has been determined by the recently developed method of frontal affinity chromatography coupled to electrospray mass spectrometry (FAC/MS). A micro-scale affinity column was prepared by immobilizing the lectin ( approximately 25 microg) onto porous glass beads in a tubing column (9.8 microl column volume). The column was then used to screen several oligosaccharide mixtures. The dissociation constants of 22 sialylated or sulfated oligosaccharides were evaluated against the immobilized lectin. The lectin was found to be highly specific for Neu5Acalpha2-6Galbeta1-4Glc/GlcNAc containing oligosaccharides with K(d) values near 10 microM. The FAC/MS assay permits the rapid determination of the dissociation constants of ligands as well as a higher throughput screening of compound mixtures, making it a valuable tool for affinity studies, especially for testing large numbers of compounds.  相似文献   

2.
We show that the affinity electrophoresis analysis of RNA–small molecule interactions can be made quantifiable by cross-linking the ligand to the gel matrix. Using an RNA–aminoglycoside model system to verify our method, we attached an acryloyl chloride molecule to the aminoglycosides paromomycin and neomycin B to synthesize an acrylamide–aminoglycoside monomer. This molecule was then used as a component in gel polymerization for affinity electrophoresis, covalently attaching an aminoglycoside molecule to the gel matrix. To test RNA binding to the cross-linked aminoglycosides, we used the aminoglycoside binding RNA molecule derived from thymidylate synthase messenger RNA (mRNA) that contains a C–C mismatch. Binding is indicated by the difference in RNA mobility between gels with cross-linked ligand, with ligand embedded during polymerization, and with no ligand present. Critically, the predicted straight line relationship between the reciprocal of the relative migration of the RNA and the ligand concentration is obtained when using cross-linked aminoglycosides, whereas a straight line is not obtained using embedded aminoglycosides. Average apparent dissociation constants are determined from the slope of the line from these plots. This method allows an easy quantitative comparison between different nucleic acid molecules for a small molecule ligand.  相似文献   

3.
A simple and rapid method is presented for determination of the association constants and stoichiometries describing ligand macromolecule interactions. Based on flow injection analysis and electrochemical detection by amperometry, the only requirements for direct measurements are that the ligand have redox properties and that these properties change upon binding to the macromolecule. Bound ligand may then be measured in the presence of free ligand. Detection limits are of the order of 2 pmol of ligand or less, a level that should provide access to previously unmeasurable systems. For the exemplary system, chlorpromazine and human orosomucoid, K0ass was determined as 0.39 X 10(6) M-1 with 0.76 chlorpromazine binding sites of this affinity per orosomucoid molecule.  相似文献   

4.
The equilibrium association constants for the binding of a wide variety of effecting ligands of the lac repressor were measured by equilibrium dialysis. Also, detailed investigations of the apparent rate of dissociation of repressor-operator comples as a function of ligand concentration were carried out for several inducers and anti-inducers. The affinity of repressor-ligand comples for operator DNA was evaluated from the specific rate constants at saturating concentrations of effecting ligand. By fitting the experimental data depicting the functional dependence of the rate of dissociation upon ligand concentrations to calculated curves, assuming simple models of the induction mechanism, the equilibrium association constant for the binding of effecting ligand to repressor-operator comples was determined. Inducers reduce the affinity of lac repressor for operator DNA by a factor of approximately 1000 under standard conditions; the extent of destabilization depends on Mg2+ ion concentration. Anti-inducers increase the affinity of repressor for operator at most a factor of five. Only one neutral ligand, which binds to repressor without altering the stability of repressor-operator comples, was found. No homotropic or heterotropic interactions in the binding of effecting ligands either to repressor or to repressor-operator complex are evident.  相似文献   

5.
An important goal in drug development is to engineer inhibitors and ligands that have high binding affinities for their target molecules. In optimizing these interactions, the precise determination of the binding affinity becomes progressively difficult once it approaches and surpasses the nanomolar level. Isothermal titration calorimetry (ITC) can be used to determine the complete binding thermodynamics of a ligand down to the picomolar range by using an experimental mode called displacement titration. In a displacement titration, the association constant of a high-affinity ligand that cannot be measured directly is artificially lowered to a measurable level by premixing the protein with a weaker competitive ligand. To perform this protocol, two titrations must be carried out: a direct titration of the weak ligand to the target macromolecule and a displacement titration of the high-affinity ligand to the weak ligand-target macromolecule complex. This protocol takes approximately 5 h.  相似文献   

6.
The binding of substrates and a product to glutathione S-transferase A from rat liver was studied by use of equilibrium dialysis and equilibrium partition in a two-phase system. The radioactive substrates glutathione and bromosulfophthalein as well as a product of glutathione and 3,4-dichloro-1-nitrobenzene, S-(2-chloro-4-nitrophenyl)glutathione, gave hyperbolic binding isotherms with a stoichiometry of 2 mol per mol of enzyme (i.e. 1 molecule per subunit). Glutathione (and glutathione disulfide) had an equilibrium (dissociation) constant for the binding of about 10 microM, whereas bromosulfophthalein and the product had equilibrium constants of about 0.5 microM. All ligands showed the same binding stoichiometry, and competition experiments involving unlabeled ligands indicated that glutathione and the glutathione derivatives were binding to the same site. Low affinity sites appeared to exist in addition to the specific high affinity sites (one per subunit) for all ligands tested. The binding studies are fully consistent with a steady state random kinetic mechanism for the enzyme.  相似文献   

7.
We have used glucagon and nine glucagon analogs to investigate the interactions of these ligands with glucagon-binding sites present on isolated canine hepatocytes. Curves reflecting the inhibition of 125I-labeled glucagon or 125I-labeled analog binding to cells by the 10 peptides spanned, overall, a 10(6)-fold range of hormone concentration, were consistent with hormone binding to two classes of binding sites in each case, and fell into two groups, one of which contained curves that were considerably more shallow than the other. Only conditions that emphasized prior binding to low affinity sites resulted in the rapid and extensive dissociation of receptor-bound ligand from isolated cells. Finally, all 10 peptides exhibited a concentration-dependent inhibition of the incorporation of [14C]fructose into hepatocyte glycogen that correlated best with dissociation constants for high affinity rather than for low affinity binding. We conclude that (a) the association of ligand with the high and low affinity glucagon-binding sites of isolated canine hepatocytes is a characteristic of analogs modified at diverse sites throughout the peptide hormone, (b) the different rates of dissociation of ligand from the two populations of binding sites most probably account for the biphasic dissociation of ligand from isolated cells and for the different affinities of the two receptor populations for ligand, and (c) the activity of glucagon and glucagon analogs to inhibit the incorporation of fructose into hepatocyte glycogen arises from the association of ligand with high affinity binding sites.  相似文献   

8.
Affinity chromatography on a column of 4-phenylbutylamine, immobilized on succinylated polyacrylic hydrazide agarose, has been employed to study binding of ligands to α-chymotrypsin. In contrast to earlier studies of competitive elution phenomena, where an added soluble ligand interferes with enzyme binding to an affinity matrix, benzyloxycarbonyl derivatives of aromatic acids have been shown to facilitate binding of chymotrypsin to this matrix. This behavior has been analyzed in terms of an expanded binding scheme for affinity chromatography including the formation of a ternary complex (α-chymotrypsin · benzyloxycarbonyl-amino acid · 4-phenylbutylamine · matrix) where the soluble ligand and immobilized ligand bind to different sites. Equations to describe the phenonema have been derived and utilized to quantitate equilibrium constants for dissociation of the binary and ternary complexes. Benzyloxycarbonyl-Ala-Ala was found to promote earlier elution of the enzyme from its affinity matrix. Other ligands known to bind to the active site do not alter the binding to the 4-phenylbutylamine affinity matrix. These results illustrate the conclusion that binding of a small molecule can alter affinity retention in positive, negative, or neutral modes. This suggests that affinity chromatography could be “fine-tuned” by appropriate selection of cosolutes and illustrates the value of relatively weakly binding affinity matrices in enzyme studies.  相似文献   

9.
The affinity constants of recombinant human galectin-1 and galectin-3 for sugars were determined by capillary affinophoresis. The monoliganded affinophore contains p-aminophenyl-beta-lactoside as an affinity ligand in the matrix of succinylglutathione and has three negative charges. An analysis of the mobility change of the lectins caused by the affinophore and its inhibition by neutral sugars allowed, for the first time, a determination of the affinity constants between the binding sites of the lectins and sugars. The relative magnitude of the affinity constants for each of the sugars in terms of dissociation constants found to be consistent with previously reported data on the concentrations of sugars that caused a 50% inhibition (I50) in the binding assay of the lectin to oligosaccharide-immobilized agarose beads but the absolute values of the dissociation constants were considerably smaller than the I50 values. Capillary affinophoresis indicated microheterogeneity of the lectin preparations and enabled the separate analysis of the affinity of each component simultaneously showing the advantage in using a separation method for analysis of bioaffinity.  相似文献   

10.
6,7-Dimethyllumazine derivatives, substituted at the 8-position with aldityls or monohydroxyalkyl groups, have been examined for their binding ability to lumazine apo-protein from two strains of Photobacterium phosphoreum using fluorescence dynamics techniques. On the protein the lumazine has a nearly monoexponential decay of fluorescence with lifetime 13.8 ns (20 degrees C). In free solution the lifetime is 9.6 ns. The concentration of free and bound lumazine in an equilibrium mixture can be recovered readily by analysis of the fluorescence decay. Only the aldityl derivatives D-xylityl and 3'-deoxy-D-ribityl, having stereoconfigurations at the 2' and 4' positions identical to the natural ligand, 8-(1'-D-ribityl), show comparable dissociation constants (0.3 microM, 20 degrees C, pH 7.0). D-Erythrityl and L-arabityl have dissociation constants of 1-2 microM. All other ligands show no interaction at all or have dissociation constants in the range 6-80 microM, which can still be determined semi-quantitatively using the fluorescence decay technique. In the case of these very weakly bound ligands, unambiguous detection of bound ligand can be shown by a long correlation time (23 ns, 2 degrees C) for the fluorescence anisotropy decay. Examination of the bound D-xylityl compound's fluorescence anisotropy decay at high time resolution (< 100 ps) shows rigid association, i.e. no mobility independent of the macromolecule. All bound ligands appear to be similarly positioned in the binding site. The influence of the stereoconfiguration at the 8-position found for lumazine protein parallels that previously observed for the enzyme riboflavin synthase, where the lumazines are substrates or inhibitors. This is consistent with the finding of significant sequence similarity between these proteins. The binding rigidity may have implications for the mechanism of the enzyme.  相似文献   

11.
The binding characteristics of a series of PPARgamma ligands (GW9662, GI 262570, cis-parinaric acid, 15-deoxy-Delta(12,14)-prostaglandin J(2), LY171883, indomethacin, linoleic acid, palmitic acid and troglitazone) to human PPARgamma ligand binding domain have been investigated for the first time by using surface plasmon resonance biosensor technology, CD spectroscopy and molecular docking simulation. The surface plasmon resonance biosensor determined equilibrium dissociation constants (KD values) are in agreement with the results reported in the literature measured by other methods, indicating that the surface plasmon resonance biosensor can assume a direct assay method in screening new PPARgamma agonists or antagonists. Conformational changes of PPARgamma caused by the ligand binding were detected by CD determination. It is interesting that the thermal stability of the receptor, reflected by the increase of the transition temperature (T(m)), was enhanced by the binding of the ligands. The increment of the transition temperature (DeltaT(m)) of PPARgamma owing to ligand binding correlated well with the binding affinity. This finding implies that CD could possibly be a complementary technology with which to determine the binding affinities of ligands to PPARgamma. Molecular docking simulation provided reasonable and reliable binding models of the ligands to PPARgamma at the atomic level, which gave a good explanation of the structure-binding affinity relationship for the ligands interacting with PPARgamma. Moreover, the predicted binding free energies for the ligands correlated well with the binding constants measured by the surface plasmon resonance biosensor, indicating that the docking paradigm used in this study could possibly be employed in virtual screening to discover new PPARgamma ligands, although the docking program cannot accurately predict the absolute ligand-PPARgamma binding affinity.  相似文献   

12.
The kinetics of Ca2+-release from the two high affinity sites of troponin-C (TnC) was studied by the stopped flow technique following rapid mixing with either EDTA or excess TbCl3. The rate constants obtained by the two methods were 2.8 and 0.7 s-1, respectively. For the tryptic fragment of TnC that contains only the COOH-terminal half of the molecule, both methods generate rate constants of 2.2 s-1. These results are consistent with the interpretation that binding of Tb3+ to the Ca2+-specific sites reduces the rate of dissociation of Ca2+ from, and thereby enhances the affinity for, the Ca2+-Mg2+ sites; this, in turn, suggests interactions between the two halves of the TnC molecule.  相似文献   

13.
The equilibria of the binding of methyl and ethyl isonitrile to carp hemoglobin have been measured at three pH values in the presence and absence of inositol hexaphosphate. The binding of methyl isonitrile is characterized by a higher overall dissociation constant, C1/2, and a higher Hill coefficient, n, than that of the ethyl derivative. The former is consistent with the greater hydrophobicity of ethyl isonitrile, and the latter is probably due to a greater intrinsic difference or heterogeneity in the binding affinities of the alpha- and beta-chains for the larger ligand. Changes in log C1/2 which result from alterations in pH or addition of organic phosphate are the same for both ligands within experimental error. This result is not consistent with affinity changes being the result of steric interactions between the protein and the ligand. At pH 6 in the presence of inositol hexaphosphate, equilibrium parameters estimated from overall rates of ligand binding and dissociation are in good agreement with direct equilibrium measurements. This is consistent with the protein being in a low-affinity, T-like state even when saturated with ligand under these conditions, resulting in a loss of cooperativity in ligand binding. At high pH, ligand binding remains cooperative, as evidenced by n values greater than unity, a general lack of agreement between measured equilibrium parameters and those estimated from overall kinetic constants, and differences in the kinetics of ligand binding as observed by rapid-mixing and flash photolysis techniques. Thus, the deoxygenated state of carp hemoglobin at high pH does not appear to be a good model of a deoxygenated R quaternary structural state.  相似文献   

14.
Quantitative affinity chromatography on uridine-5'-(Sepharose-4-aminophenylphosphoryl)-2'(3')-phosphate was developed for the study of binding of ribonuclease species to nucleotide ligands. Elution of the native species ribonuclease-A and -S on the afffinity matrix in 0.4 M ammonium acetate, pH 5.2, containing various amounts of the soluble competing ligand 2'-cytidine monophosphate, reveals an inverse response of elution volume to concentration of soluble ligand. This response conforms to behavior expected for the competing binding equilibria enzyme-soluble ligand and enzyme-insoluble ligand. A-NALYSIS OF ELUTION DATA ALLOWS CALCULATION OF KI and KIM, the dissociation constants, respectively, for the soluble and insoluble protein-ligand complexes. The values of these chromatographically derived constants are similar to values of dissocation constants determined in solution by kinetics of inhibition by 2'-cytidine monophosphate and uridine-5'-(j-aminophenylphosphoryl)-2'(3')-phosphate. Successful competitive elution experiments with [p-F-Phe8]semisynthetic ribonuclease-S' and individual elution trials for [4-F-His12]semisynthetic ribonuclease-S' indicate the utility of the quantitative affinity chromatographic technique for determination of ligand binding properties of ribonuclease derivatives, including inactive species. Nonbiospecific aspects of the interaction of ribonuclease with the affinity matrix in ammonium acetate buffers of concentrations 0.1 M and below were noted, delinating limits of conditions allowing the biospecificity needed for ligand-binding analyses by competitive elution. The dependence of ribonuclease competitive elution behavior on the amount of protein eluted also was examined and related to theoretical considerations in the quantitative application of affinity chromatography.  相似文献   

15.
Differential scanning calorimetry (DSC) determines the enthalpy change upon protein unfolding and the melting temperature of the protein. Performing DSC of a protein in the presence of increasing concentrations of specifically-binding ligand yields a series of curves that can be fit to obtain the protein–ligand dissociation constant as done in the fluorescence-based thermal shift assay (FTSA, ThermoFluor, DSF). The enthalpy of unfolding, as directly determined by DSC, helps improving the precision of the fit. If the ligand binding is linked to protonation reactions, the intrinsic binding constant can be determined by performing the affinity determination at a series of pH values. Here, the intrinsic, pH-independent, affinity of acetazolamide binding to carbonic anhydrase (CA) II was determined. A series of high-affinity ligands binding to CAIX, an anticancer drug target, and CAII showed recognition and selectivity for the anticancer isozyme. Performing the DSC experiment in buffers of highly different enthalpies of protonation enabled to observe the ligand unbinding-linked protonation reactions and estimate the intrinsic enthalpy of binding. The heat capacity of combined unfolding and unbinding was determined by varying the ligand concentrations. Taken together, these parameters provided a detailed thermodynamic picture of the linked ligand binding and protein unfolding process.  相似文献   

16.
B M Dunn  I M Chaiken 《Biochemistry》1975,14(11):2343-2349
The elution of staphylococcal nuclease on thymidine 3'-(p-Sepharose-aminophenyl phosphate) 5'-phosphate (nucleotide ligand of nuclease covalently bound to Sepharose 4B) was studied in the presence of a variety of soluble nucleotide ligands. The elution volumes of nuclease vary proportionally with matrix-bound ligand concentration (at constant soluble ligand concentration), inversely with soluble ligand concentration (at constant matrix-bound ligand concentration), and inversely with dissociation constant of soluble ligand (at constant concentrations of soluble and matrix-bound ligand). The variation of elution volume was related to an expression which described the competition of soluble and matrix-bound ligand for nuclease binding. Using this expression, values for dissociation constants were derived for nucleotide ligands in both the soluble and bound form. The values for soluble ligand were found to correspond closely to those obtained by either equilibrium dialysis or kinetics of inhibition of nuclease activity. Furthermore, a close correspondence was found between the values of dissocation constants for matrix-bound and soluble thymidine 3'-(p-aminophenyl phosphate) 5'-phosphate, thus defining the interaction of nuclease with the matrix-bound ligand as a process quite similar to that occurring in solution.  相似文献   

17.
A flash photolysis method is described for analyzing ligand binding to the new and growing group of hemoglobins which are hexacoordinate in the unligated, ferrous state. Simple analysis of a two exponential fit to time courses for CO rebinding at varying CO concentrations yields rate constants for formation and dissociation of the hexacoordinate complex, and the bimolecular rate constant for CO binding. This method was tested with a nonsymbiotic plant hemoglobin from rice for which these values had not previously been determined. For this protein, dissociation and rebinding of the hexacoordinating amino acid side chain, His(73), is rapid and similar to the rate of CO binding at high CO concentrations. These results indicate that hexacoordination must be taken into account when evaluating the affinity of hexacoordinate hemoglobins for ligands.  相似文献   

18.
We present substantial new evidence for at least four distinct types of opioid receptors in rat brain, using quantitative ligand binding studies and mathematical modeling. Three of these binding sites are consistent with the well established "mu", "delta" and "kappa" receptors. The fourth has two distinctive features: 1) extremely high affinity (dissociation constant less than 1 nM); 2) almost complete lack of specificity for the classical "delta" or "mu" selective ligands. These properties are consistent with the putative "mu1" receptor described by Pasternak and coworkers.  相似文献   

19.
Hydrolysis of small substrates (maltose, maltotriose and o-nitrophenylmaltoside) catalysed by porcine pancreatic alpha-amylase was studied from a kinetic viewpoint over a wide range of substrate concentrations. Non-linear double-reciprocal plots are obtained at high maltose, maltotriose and o-nitrophenylmaltoside concentrations indicating typical substrate inhibition. These results are consistent with the successive binding of two molecules of substrate per enzyme molecule with dissociation constants Ks1 and Ks2. The Hill plot, log [v/(V-v)] versus log [S], is clearly biphasic and allows the dissociation constants of the ES1 and ES2 complexes to be calculated. Maltose and maltotriose are inhibitors of the amylase-catalysed amylose and o-nitrophenylmaltoside hydrolysis. The inhibition is of the competitive type. The (apparent) inhibition constant Kiapp varies with the inhibitor concentration. These results are also consistent with the successive binding of at least two molecules of maltose or maltotriose per amylase molecule with the dissociation constants Ki1 and Ki2. These inhibition studies show that small substrates and large polymeric ones are hydrolysed at the same catalytic site(s). The values of the dissociation constants Ks1 and Ki1 of the maltose-amylase complexes are identical. According to the five-subsite energy profile previously determined, at low concentration, maltose (as substrate and as inhibitor) binds to the same two sites (4,5) or (3,4), maltotriose (as substrate and as inhibitor) and o-nitrophenyl-maltoside (as substrate) bind to the same three subsites (3,4,5). The dissociation constants Ks2 and Ki2 determined at high substrate and inhibitor concentration are consistent with the binding of the second ligand molecule at a single subsite. The binding mode of the second molecule of maltose (substrate) and o-nitrophenylmaltoside remains uncertain, very likely because of the inaccuracy due to simplifications in the calculations of the subsite binding energies. No binding site(s) outside the catalytic one has been taken into account in this model.  相似文献   

20.
Mathematical models based on the current understanding of co-operativity in ligand binding to the (macro) molecule and relating the dose-response (saturation) curve of the (macro) molecule ligation to intrinsic dissociation constants characterizing the affinities of ligand for binding sites of both unliganded and partly liganded (macro) molecule have been developed. The simplified models disregarding the structural properties and considerations concerning conformational changes of the (macro) molecule retain the ability to yield sigmoid curves of ligand binding and reflect the co-operativity. Model 1 contains only three parameters, parameter κ (a multiplier characterising the change in the affinity) reflects also the existence and type of co-operativity of ligand binding: κ<1 corresponds to positive co-operativity, κ>1 to the negative and κ=1 to the absence of any co-operativity. Model 2 contains an extra parameter, ω, equilibrium constant for the T0↔R0 transition but fails to produce dose-response, which would suggest negative co-operativity. For any fixed n>1, the deviation of the dose-response (saturation) curve from the Henri hyperbola depends either solely on parameter κ (Model 1) or also on parameter ω (Model 2). The (macro) molecule being a receptor, both models yield a diversity of dose-response curves due to possible variety of efficacies of the (macro) molecule. The models may be considered as extensions of the Henri model: in case the dissociation constants remain unchanged, the proposed models are reduced to the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号