首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we present an electrochemical DNA sensor based on silver nanoparticles/poly(trans-3-(3-pyridyl) acrylic acid) (PPAA)/multiwalled carbon nanotubes with carboxyl groups (MWCNTs-COOH) modified glassy carbon electrode (GCE). The polymer film was electropolymerized onto MWCNTs-COOH modified electrode by cyclic voltammetry (CV), and then silver nanoparticles were electrodeposited on the surface of PPAA/MWCNTs-COOH composite film. Thiol group end single-stranded DNA (HS-ssDNA) probe was easily covalently linked onto the surface of silver nanoparticles through a 5′ thiol linker. The DNA hybridization events were monitored based on the signal of the intercalated adriamycin by differential pulse voltammetry (DPV). Based on the response of adriamycin, only the complementary oligonucleotides gave an obvious current signal compared with the three-base mismatched and noncomplementary oligonucleotides. Under the optimal conditions, the increase of reduction peak current of adriamycin was linear with the logarithm of the concentration of the complementary oligonucleotides from 9.0 × 10−12 to 9.0 × 10−9 M with a detection limit of 3.2 × 10−12 M. In addition, this DNA sensor exhibited an excellent reproducibility and stability during DNA hybridization assay.  相似文献   

2.
In this study, a carbon paste electrode modified with N-butylpyridinium hexafluorophosphate (BPPF6) ionic liquid and DNA was introduced as an electrochemical biosensor to study the interaction between DNA and aflatoxin B1 molecules. For this purpose, variations in oxidation peak current of guanine in various concentrations of aflatoxin B1 were measured by using the differential pulse voltammetry (DPV) method. According to this study, the binding constant of DNA–aflatoxin B1 was found to be 3.5 × 106 M−1. This modified electrode was also used for determination of low concentrations of aflatoxin B1 by using differential pulse voltammetry. A linear dynamic range from 8.00 × 10−8 to 5.91 × 10−7 M and a limit of detection of 2.00 × 10−8 M resulted from DPV measurements. To confirm our results, a fluorescence study was also performed. It resulted in a binding constant of 2.8 × 106 M−1, which is in good agreement with that obtained from electrochemical study.  相似文献   

3.
Electrochemically active composite film that contains multiwalled carbon nanotubes (MWCNTs), Nafion (NF), and poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold, and indium tin oxide (ITO) electrodes by potentiodynamic method. The presence of MWCNTs in the composite film (MWCNT–NF–PMG) enhances the surface coverage concentration (Γ) of PMG by fivefold. Similarly, an electrochemical quartz crystal microbalance study revealed enhancement in the deposition of PMG at MWCNT–NF film when compared with bare and only NF modified electrodes. The surface morphology of the composite film was studied using atomic force microscopy, which revealed that the PMG incorporated on MWCNT–NF film. The composite film exhibited enhanced electrocatalytic activity toward the mixture of biochemical compounds catechol and quinol. The electrocatalytic responses of analytes at MWCNT–NF–PMG composite film were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electrocatalysis studies, well-separated voltammetric peaks were obtained at the composite film for catechol and quinol with a peak separation of 147 mV. The sensitivity values of the composite film toward catechol and quinol by the DPV technique were 0.4 and 3.2 mA mM−1 cm−2, respectively, which are higher than the values obtained by the CV technique. Similarly, the above-mentioned values are better than the previously reported electroanalytical values for the same analytes.  相似文献   

4.
This study reports the synthesis and characterization of a novel nanostructure-based electrode for electrochemical studies and determination of captopril (CP). At first manganese titanate nanoceramics were synthesized by the sol–gel method. The structural evaluations of the pure nanopowders were investigated by different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then it was used to prepare a new nanostructured manganese titanate carbon paste electrode (MnTiO3/CPE). The characterization of the modified sensor was carried out by comprehensive techniques such as electrochemical impedance spectroscopy (EIS), SEM, and voltammetry. Subsequently, the modified electrode was used for CP catalytic oxidation in the presence of para-aminobenzoic acid (PABA) as a mediator. The results showed that PABA has high catalytic activity for CP oxidation. The electrochemical behavior of CP was studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and differential pulse voltammetry (DPV) techniques. Under the optimized conditions, the catalytic oxidation peak current of CP showed two linear dynamic concentration ranges of 1.0 × 10−8 to 1.0 × 10−7 and 1.0 × 10−7 to 1.0 × 10−6, with a detection limit of 1.6 nM (signal/noise = 3), using the DPV technique. Finally, the proposed method was successfully applied for determination of CP in pharmaceutical and biological samples.  相似文献   

5.
Poly(sulfosalicylic acid) and single-stranded DNA composite (PSSA–ssDNA)-modified glassy carbon electrode (GCE) was prepared by electropolymerization and then successfully used to simultaneously determine adenine (A), guanine (G), and thymine (T). The characterization of electrochemically synthesized PSSA–ssDNA film was investigated by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the simultaneous determination of A, G, and T in 0.1 M phosphate buffer solution (PBS, pH 7.0). Well-separated voltammetric peaks were obtained among A, G, and T presented in the analyte mixture. Under the optimal conditions, the peak currents for A, G, and T increased linearly with the increase of analyte mixture concentration in the ranges of 6.5 × 10−8 to 1.1 × 10−6, 6.5 × 10−8 to 1.1 × 10−6, and 4.1 × 10−6 to 2.7 × 10−5 M, respectively. The detection limits (signal/noise = 3) for A, G, and T were 2.2 × 10–8, 2.2 × 10–8, and 1.4 × 10–6 M, respectively.  相似文献   

6.
The interaction of salbutamol (Sal), an animal growth promoter, with DNA was investigated by differential pulse voltammetry (DPV), cyclic voltammetry (CV), and fluorescence spectroscopy. An irreversible reduction was observed from the cyclic voltammograms, and the reaction mechanism involved a one-electron change irreversible oxidation. In the presence of DNA, the DPV peak current decreased and the Sal peak shifted to higher potentials, indicating that Sal interacted with DNA to form an intercalation Sal–DNA complex. In addition, reaction binding parameters were extracted from the DPV data with the use of the multivariate curve resolution–alternating least squares (MCR–ALS) method; the binding constant and ratio were found to be (2.0 ± 0.5) × 105 M−1 and 1:1, respectively. Quantitative voltammetric analysis of Sal was performed in the concentration range of 3.02 × 10−6 to 1.23 × 10−4 mol L−1, and it was found that the detection limit was 5.11 × 10−7 mol L−1 in the presence of 1.00 × 10−6 mol L−1 DNA. The method was applied for the determination of Sal in spiked urine and human serum samples, and the calibration was successfully verified.  相似文献   

7.
A new biosensor employing immobilized DNA on a nano-structured conductive polymer fixed onto a platinum electrode is presented. Upon optimization of synthesis parameters, polypyrrole nanofibers, 30-90 nm in diameter, were synthesized in an aqueous media by the electropolymerization of pyrrole using normal pulse voltammetry (NPV). The nanofiber film was investigated by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Double-stranded DNA was physisorbed onto the PPy nanofiber films. Various parameters, including the pH and DNA concentration, were optimized. The DNA immobilized on the nanofiber films was characterized using differential pulse voltammetry (DPV) and Fourier-transform infrared (FTIR) spectroscopy. Using DPV to study the interaction of spermidine with DNA, a binding constant (K) value of 4.08 x 10(5)+/-0.05 M(-1) was obtained. For the determination of spermidine, the proposed method exhibited a good dynamic range, correlation coefficient (0.05-1.0 microM and 0.9983, respectively) and a low detection limit (0.02 microM), although Ca(2+) ions were found to electrostatically bind to DNA and weaken the spermidine-DNA interaction.  相似文献   

8.
Electrochemically active composite film containing multiwalled carbon nanotubes (MWCNTs) and vitamin B12 was synthesized on glassy carbon, gold, and indium tin oxide electrodes by the potentiodynamic method. The presence of MWCNTs in the composite film (MWCNT–B12) modified electrode mediates vitamin B12’s redox reaction, whereas vitamin B12’s redox reaction does not occur at bare electrode. The electrochemical impedance spectroscopy studies reveal that MWCNTs present in MWCNT–B12 film enhance electron shuttling between the reactant and electrode surface. The surface morphology of bare electrode, MWCNT film. and MWCNT–B12 composite film was studied using atomic force microscopy, which reveals vitamin B12 incorporated with MWCNTs. The MWCNT–B12 composite film exhibits promising enhanced electrocatalysis toward hydrazine. The electrocatalysis response of hydrazine at MWCNT film and MWCNT–B12 composite film was measured using cyclic voltammetry and amperometric current–time (it) curve techniques. The linear concentration range of hydrazine obtained at MWCNT–B12 composite film using the it curve technique is 2.0 μM–1.95 mM. Similarly, the sensitivity of MWCNT–B12 composite film for hydrazine determination using the it curve technique is 1.32 mA mM−1 cm−2, and the hydrazine’s limit of detection at MWCNT–B12 composite film is 0.7 μM.  相似文献   

9.
In the present study, a gold nanoparticle-modified gold electrode (nanogold electrode) was used to develop a novel fluorescein electrochemical DNA biosensor based on a target-induced conformational change. The nanogold electrode was obtained by electrodepositing gold nanoparticles onto a bare gold electrode. This modification not only immobilized probe oligonucleotides, but also adsorbed fluorescein onto the surface of the gold nanoparticles to form an “arch-like” structure. This article compares the electrochemical signal changes caused by the hybridization of “arch-like” DNA on nanogold electrode and linear DNA on bare gold electrode. The results showed that the adsorption effect of nanogold can enhance the sensitivity of the sensor. The linear range of target ssDNA is from 2.0 × 10−9 M to 2.0 × 10−8 M with a correlation coefficient of 0.9956 and detection limit (3σ) of 7.10 × 10−10 M. Additionally, the specificity and hybridization response of this simple sensor were investigated.  相似文献   

10.
A sensitive electrochemical method for DNA hybridization based on immobilization of DNA probe and [Ru(NH3)5Cl]PF6 complex onto nickel oxide nanomaterials (NiOxnp) modified glassy carbon electrode was developed. Due to strong affinity of NiOxnp for phosphate groups, oligonucleotides probe with a terminal 5′-phosphate group was attached to the surface of the modified electrode. DNA immobilization and hybridization were characterized by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry using K3Fe(CN)6/K4Fe(CN)6 and [Ru(NH3)5Cl]PF6 as probe and indicator, respectively. The Ru-complex current response indicates only the complementary sequence showing an obvious current signal in comparison to non-complementary and three or single point mismatched sequences. The fabricated biosensor possessed good selectivity and sensitivity for complementary probe, taxon: 32630 tumor necrosis factor (TNF). The linear dynamic range, sensitivity and detection limit of the proposed biosensor were 4 × 10−10 M to 1 × 10−8 M, 34.32 nA nM−1 and 6.8 × 10−11 M, respectively. Excellent reproducibility and stability, quite simple and inexpensive preparation are the other advantages of proposed biosensor.  相似文献   

11.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

12.
In this work, we fabricated a sensitivity chronocoulometric DNA sensor (CDS) based on gold nanoparticles (AuNPs)/poly(l-lysine) complex film modified glassy carbon electrode. Hexaammineruthenium(III) chloride ([Ru(NH3)6]3+) was used as the electroactive indicator. The assembled process was investigated by cyclic voltammetry (CV) and chronocoulometry (CC). CC is used to monitor the DNA hybridization event by measurement of electrostatic binding [Ru(NH3)6]3+. Under the optimal conditions, the signal of [Ru(NH3)6]3+ was linear with the logarithm of the concentration of the complementary oligonucleotides from 1.0 × 10−13 to 1.0 × 10−11 M, and the detection limit is 3.5 × 10−14 M.  相似文献   

13.
Hou S  Zheng N  Feng H  Li X  Yuan Z 《Analytical biochemistry》2008,381(2):179-184
A polymerized film of 3,5-dihydroxy benzoic acid (DBA) was prepared on the surface of a glassy carbon electrode (GCE) in neutral solution by cyclic voltammetry (CV). The poly(DBA) film-coated GCE exhibited excellent electrocatalytic activity toward the oxidation of dopamine (DA). A linear range of 1.0 × 10−7 to 1.0 × 10−4 M and a detection limit of 6.0 × 10−8 M were observed in pH 7.4 phosphate buffer solutions. Moreover, the interference of ascorbic acid (AA) was effectively eliminated. This work provides a simple and easy approach to selective detection of DA in the presence of AA.  相似文献   

14.
A three-dimensional (3D) continuous and interconnected network graphene foam (GF) was synthesized by chemical vapor deposition using nickel foam as a template. The morphologies of the GF were observed by scanning electron microscopy. X-ray diffraction and Raman spectroscopy were used to investigate the structure of GF. The graphene with few layers and defect free was closely coated on the backbone of the 3D nickel foam. After etching nickel, the GF was transferred onto indium tin oxide (ITO) glass, which acted as an electrode to detect uric acid using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The GF/ITO electrode showed a high sensitivity for the detection of uric acid: approximately 9.44 mA mM−1 in the range of 25 nM–0.1 μM and 1.85 mA mM−1 in the range of 0.1–60 μM. The limit of detection of GF/ITO electrode for uric acid is 3 nM. The GF/ITO electrode also showed a high selectivity for the detection of uric acid in the presence of ascorbic acid. This electrode will have a wide range of potential application prospects in electrochemical detection.  相似文献   

15.
In the current article, preparation and application of a graphene oxide nanosheets-based sensor for electrochemical determination of caffeic acid (CA) in the presence of catechin is described. This measurement was performed using the differential pulse voltammetry (DPV) technique and chemometric methods such as multivariate curve resolution–alternating least squares (MCR–ALS). The modified sensor was characterized by various techniques such as Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, ultraviolet–visible, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Operating conditions and influencing variables (involving several chemical and instrumental variables) were optimized with central composite rotatable design and response surface methodology. The second-order electrochemical data were generated by changing the pulse height in DPV, and after potential shift correction MCR–ALS was applied. Under the optimized conditions, the dynamic range for CA was from 0.5 to 100.0 μM and the detection limit was found to be 1.1 × 10–9 M. The results revealed that the modified electrode shows an improvement in anodic oxidation activity of CA due to a marked enhancement in the current response compared with the bare carbon paste electrode. The modified electrode demonstrated good sensitivity, selectivity, and stability. The proposed method was successfully applied in determination of caffeic acid in the presence of unexpected electroactive interferences with a very high degree of overlapping such as catechin in real samples.  相似文献   

16.
Ferrous human serum heme–albumin (HSA–heme–Fe(II)) displays globin-like properties. Here, the effect of ibuprofen and warfarin on kinetics of HSA–heme–Fe(II) nitrosylation is reported. Values of the second-order rate constant for HSA–heme–Fe(II) nitrosylation (kon) decrease from 6.3 × 106 M−1 s−1 in the absence of drugs, to 4.1 × 105 M−1 s−1 and 4.8 × 105 M−1 s−1, in the presence of saturating amounts of ibuprofen and warfarin, respectively, at pH 7.0 and 20.0 °C. From the dependence of kon on the drug concentration, values of the dissociation equilibrium constant for ibuprofen and warfarin binding to HSA–heme–Fe(II) (i.e., K = 3.2 × 10−3 M and 2.6 × 10−4 M, respectively) were determined. The observed allosteric effects could indeed reflect ibuprofen and warfarin binding to the regulatory fatty acid binding site FA2, which brings about an alteration of heme coordination, slowing down HSA–heme–Fe(II) nitrosylation. Present data highlight the allosteric modulation of HSA–heme–Fe(II) reactivity by heterotropic effectors.  相似文献   

17.
A simple electrochemical sensor for sensitive and selective DNA detection was constructed based on gold nanorods (Au NRs) decorated graphene oxide (GO) sheets. The high-quality Au NRs–GO nanocomposite was synthesized via the electrostatic self-assembly technique, which is considered a potential sensing platform. Differential pulse voltammetry was used to monitor the DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the peak currents of methylene blue were linear with the logarithm of the concentrations of complementary DNA from 1.0 × 10−9 to 1.0 × 10−14 M with a detection limit of 3.5 × 10−15 M (signal/noise = 3). Moreover, the prepared electrochemical sensor can effectively distinguish complementary DNA sequences in the presence of a large amount of single-base mismatched DNA (1000:1), indicating that the biosensor has high selectivity.  相似文献   

18.
An electrochemical biosensor was developed for Hg2+ determination based on DNA hybridization. In the presence of Hg2+, the target and probe DNAs with thymine–thymine (T–T) mismatches could hybridize by forming T–Hg2+–T complex. This induced DNA hybridization led to the decrease in reduction peak currents of ethyl green (EG) as electroactive label, which could be used for determination of Hg2+. The difference in the value of the peak currents of EG before and after DNA hybridization (ΔI) was linear with the concentration of Hg2+ in the range of 9.0 × 10−11–1.0 × 10−9 M. The detection limit was 3.08 × 10−11 M.  相似文献   

19.
Metal ion-DNA interactions are important in nature, often changing the genetic material's structure and function. A new Yb complex of YbCl3 (tris(8-hydroxyquinoline-5-sulfonic acid) ytterbium) was synthesized and utilized as an electrochemical indicator for the detection of DNA oligonucleotide based on its interaction with Yb(QS)3. Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction of Yb(QS)3 with ds-DNA. It was revealed that Yb(QS)3 presented an excellent electrochemical activity on glassy carbon electrode (GCE) and could intercalate into the double helix of double-stranded DNA (ds-DNA). The binding mechanism of interaction was elucidated on glassy carbon electrode dipped in DNA solution and DNA modified carbon paste electrode by using differential pulse voltammetry and cyclic voltammetry. The binding ratio between this complex and ds-DNA was calculated to be 1:1. The extent of hybridization was evaluated on the basis of the difference between signals of Yb(QS)3 with probe DNA before and after hybridization with complementary DNA. With this approach, this DNA could be quantified over the range from 1 × 10−8 to 1.1 × 10−7 M. The interaction mode between Yb(QS)3 and DNA was found to be mainly intercalative interaction. These results were confirmed with fluorescence experiments.  相似文献   

20.
A novel biosensor has been constructed by the electrodeposition of Au-nanoclusters (nano-Au) on poly(3-amino-5-mercapto-1,2,4-triazole) (p-TA) film modified glassy carbon electrode (GCE) and employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA), uric acid (UA) and nitrite (NO2). NH2 and SH groups exposed to the p-TA layer are helpful for the electrodeposition of nano-Au. The combination of nano-Au and p-TA endow the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity and flexible and controllable electrodeposition process. In the fourfold co-existence system, the linear calibration plots for AA, DA, UA and NO2 were obtained over the range of 2.1–50.1 μM, 0.6–340.0 μM, 1.6–110.0 μM and 15.9–277.0 μM with detection limits of 1.1 × 10−6 M, 5.0 × 10−8 M, 8.0 × 10−8 M and 8.9 × 10−7 M, respectively. In addition, the modified biosensor was applied to the determination of AA, DA, UA and NO2 in urine and serum samples by using standard adding method with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号