首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Escherichia coli polymerase V (pol V/UmuD(2)'C) is a low-fidelity DNA polymerase that has recently been shown to avidly incorporate ribonucleotides (rNTPs) into undamaged DNA. The fidelity and sugar selectivity of pol V can be modified by missense mutations around the "steric gate" of UmuC. Here, we analyze the ability of three steric gate mutants of UmuC to facilitate translesion DNA synthesis (TLS) of a cyclobutane pyrimidine dimer (CPD) in vitro, and to promote UV-induced mutagenesis and cell survival in vivo. The pol V (UmuC_F10L) mutant discriminates against rNTP and incorrect dNTP incorporation much better than wild-type pol V and although exhibiting a reduced ability to bypass a CPD in vitro, does so with high-fidelity and consequently produces minimal UV-induced mutagenesis in vivo. In contrast, pol V (UmuC_Y11A) readily misincorporates both rNTPs and dNTPs during efficient TLS of the CPD in vitro. However, cells expressing umuD'C(Y11A) were considerably more UV-sensitive and exhibited lower levels of UV-induced mutagenesis than cells expressing wild-type umuD'C or umuD'C(Y11F). We propose that the increased UV-sensitivity and reduced UV-mutability of umuD'C(Y11A) is due to excessive incorporation of rNTPs during TLS that are subsequently targeted for repair, rather than an inability to traverse UV-induced lesions.  相似文献   

3.
A hallmark of the Escherichia coli SOS response is the large increase in mutations caused by translesion synthesis (TLS). TLS requires DNA polymerase V (UmuD'2C) and RecA. Here, we show that pol V and RecA interact by two distinct mechanisms. First, pol V binds to RecA in the absence of DNA and ATP and second, through its UmuD' subunit, requiring DNA and ATP without ATP hydrolysis. TLS occurs in the absence of a RecA nucleoprotein filament but is inhibited in its presence. Therefore, a RecA nucleoprotein filament is unlikely to be required for SOS mutagenesis. Pol V activity is severely diminished in the absence of RecA or in the presence of RecA1730, a mutant defective for pol V mutagenesis in vivo. Pol V activity is strongly enhanced with RecA mutants constitutive for mutagenesis in vivo, suggesting that RecA is an obligate accessory factor that activates pol V for SOS mutagenesis.  相似文献   

4.
In Escherichia coli, cell survival and genomic stability after UV radiation depends on repair mechanisms induced as part of the SOS response to DNA damage. The early phase of the SOS response is mostly dominated by accurate DNA repair, while the later phase is characterized with elevated mutation levels caused by error-prone DNA replication. SOS mutagenesis is largely the result of the action of DNA polymerase V (pol V), which has the ability to insert nucleotides opposite various DNA lesions in a process termed translesion DNA synthesis (TLS). Pol V is a low-fidelity polymerase that is composed of UmuD′2C and is encoded by the umuDC operon. Pol V is strictly regulated in the cell so as to avoid genomic mutation overload. RecA nucleoprotein filaments (RecA*), formed by RecA binding to single-stranded DNA with ATP, are essential for pol V-catalyzed TLS both in vivo and in vitro. This review focuses on recent studies addressing the protein composition of active DNA polymerase V, and the role of RecA protein in activating this enzyme. Based on unforeseen properties of RecA*, we describe a new model for pol V-catalyzed SOS-induced mutagenesis.  相似文献   

5.
Platinum anticancer agents form bulky DNA adducts which are thought to exert their cytotoxic effect by blocking DNA replication. Translesion synthesis, one of the pathways of postreplication repair, is thought to account for some resistance to DNA damage and much of the mutagenicity of bulky DNA adducts in dividing cells. Oxaliplatin has been shown to be effective in cisplatin-resistant cell lines and less mutagenic than cisplatin in the Ames assay. We have shown that the eukaryotic DNA polymerases yeast pol zeta, human pol beta, and human pol gamma bypass oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. Human pol eta, a product of the XPV gene, has been shown to catalyze efficient translesion synthesis past cis, syn-cyclobutane pyrimidine dimers. In the present study we compared translesion synthesis past different Pt-GG adducts by human pol eta. Our data show that, similar to other eukaryotic DNA polymerases, pol eta bypasses oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. However, pol eta-catalyzed translesion replication past Pt-DNA adducts was more efficient and less accurate than that seen for previously tested polymerases. We show that the efficiency and fidelity of translesion replication past Pt-DNA adducts appear to be determined by both the structure of the adduct and the DNA polymerase active site.  相似文献   

6.
Cell survival depends not only on the ability to repair damaged DNA but also on the capability to perform DNA replication on unrepaired or imperfect templates. Crucial to this process are specialized DNA polymerases belonging to the Y family. These enzymes share a similar catalytic fold in their N-terminal region, and most of them have a less-well-conserved C-terminus which is not required for catalytic activity. Although this region is essential for appropriate localization and recruitment in vivo, its precise role during DNA synthesis remains unclear. Here we have compared the catalytic properties of AtPOLK, an Arabidopsis orthologue of mammalian pol kappa, and a truncated version lacking 193 amino acids from its C-terminus. We found that C-terminally truncated AtPOLK is a high-efficiency mutant protein, the DNA-binding capacity of which is not affected but it has higher catalytic efficiency and fidelity than the full-length enzyme. The truncated protein shows increased propensity to extend mispaired primer termini through misalignment and enhanced error-free bypass activity on DNA templates containing 7,8-dihydro-8-oxoGuanine. These results suggest that, in addition to facilitating recruitment to the replication fork, the C-terminus of Y-family DNA polymerases may also play a role in the kinetic control of their enzymatic activity.  相似文献   

7.
E Van Dyck  F Foury  B Stillman    S J Brill 《The EMBO journal》1992,11(9):3421-3430
It has previously been shown that the mitochondrial DNA (mtDNA) of Saccharomyces cerevisiae becomes thermosensitive due to the inactivation of the mitochondrial DNA helicase gene, PIF1. A suppressor of this thermosensitive phenotype was isolated from a wild-type plasmid library by transforming a pif1 null strain to growth on glycerol at the non-permissive temperature. This suppressor is a nuclear gene encoding a 135 amino acid protein that is itself essential for mtDNA replication; cells lacking this gene are totally devoid of mtDNA. We therefore named this gene RIM1 for replication in mitochondria. The primary structure of the RIM1 protein is homologous to the single-stranded DNA binding protein (SSB) from Escherichia coli and to the mitochondrial SSB from Xenopus laevis. The mature RIM1 gene product has been purified from yeast extracts using a DNA unwinding assay dependent upon the DNA helicase activity of SV40 T-antigen. Direct amino acid sequencing of the protein reveals that RIM1 is a previously uncharacterized SSB. Antibodies against this purified protein localize RIM1 to mitochondria. The SSB encoded by RIM1 is therefore an essential component of the yeast mtDNA replication apparatus.  相似文献   

8.
Murakumo Y 《Mutation research》2002,510(1-2):37-44
Translesion DNA synthesis (TLS) is an important damage tolerance system which rescues cells from severe injuries caused by DNA damage. Specialized low fidelity DNA polymerases in this system synthesize DNA past lesions on the template DNA strand, that replicative DNA polymerases are usually unable to pass through. However, in compensation for cell survival, most polymerases in this system are potentially mutagenic and sometimes introduce mutations in the next generation. In yeast Saccharomyces cerevisiae (S. cerevisiae), DNA polymerase ζ, which consists of Rev3 and Rev7 proteins, and Rev1 are known to be involved in most damage-induced and spontaneous mutations. The human homologs of S. cerevisiae REV1, REV3, and REV7 were identified, and it is revealed that the human REV proteins have similar functions to their yeast counterparts, however, a large part of the mechanisms of mutagenesis employing REV proteins are still unclear. Recently, the new findings about REV proteins were reported, which showed that REV7 interacts not only with REV3 but also with REV1 in human and that REV7 is involved in cell cycle control in Xenopus. These findings give us a new point of view for further investigation about REV proteins. Recent studies of REV proteins are summarized and several points are discussed.  相似文献   

9.
RecA protein from E. coli binds more strongly to single stranded DNA than to duplex molecules. Using duplex DNA that contains single stranded gaps, we have studied the protection by RecA protein at various concentrations, of restriction sites as a function of their distance from the single stranded region. We show that the binding of RecA protein, initiated in the single stranded region, extends progressively along the adjoining duplex in the 5' to 3' direction with respect to the single stranded region. The strand exchange reaction is known to proceed in the same direction.  相似文献   

10.
Constitutive stable DNA replication (cSDR), which uniquely occurs inEscherichia coli rnhA mutants deficient in ribonuclease HI activity, requires RecA function. TherecA428 mutation, which inactivates the recombinase activity but imparts a constitutive coprotease activity, blocks cSDR inrnhA mutants. The result indicates that the recombinase activity of RecA, which promotes homologous pairing and strand exchange, is essential for cSDR. Despite the requirement for RecA recombinase activity, mutations inrecB, recD, recJ, ruvA andruvC neither inhibit nor stimulate cSDR. It was proposed that the property of RecA essential for homologous pairing and strand exchange is uniquely required for initiation of cSDR inrnhA mutants without involving the homologous recombination process. The possibility that RecA protein is necessary to counteract the action of Tus protein, a contra-helicase which stalls replication forks in theter region of the chromosome, was ruled out because introduction of thetus : :kan mutation, which inactivates Tus protein, did not alleviate the RecA requirement for cSDR.  相似文献   

11.
Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed.  相似文献   

12.
The ATP-dependent three-strand exchange activity of the Streptococcus pneumoniae RecA protein (RecA(Sp)), like that of the Escherichia coli RecA protein (RecA(Ec)), is strongly stimulated by the single-stranded DNA-binding protein (SSB) from either E. coli (SSB(Ec)) or S. pneumoniae (SSB(Sp)). The RecA(Sp) protein differs from the RecA(Ec) protein, however, in that its ssDNA-dependent ATP hydrolysis activity is completely inhibited by SSB(Ec) or SSB(Sp) protein, apparently because these proteins displace RecA(Sp) protein from ssDNA. These results indicate that in contrast to the mechanism that has been established for the RecA(Ec) protein, SSB protein does not stimulate the RecA(Sp) protein-promoted strand exchange reaction by facilitating the formation of a presynaptic complex between the RecA(Sp) protein and the ssDNA substrate. In addition to acting presynaptically, however, it has been proposed that SSB(Ec) protein also stimulates the RecA(Ec) protein strand exchange reaction postsynaptically, by binding to the displaced single strand that is generated when the ssDNA substrate invades the homologous linear dsDNA. In the RecA(Sp) protein-promoted reaction, the stimulatory effect of SSB protein may be due entirely to this postsynaptic mechanism. The competing displacement of RecA(Sp) protein from the ssDNA substrate by SSB protein, however, appears to limit the efficiency of the strand exchange reaction (especially at high SSB protein concentrations or when SSB protein is added to the ssDNA before RecA(Sp) protein) relative to that observed under the same conditions with the RecA(Ec) protein.  相似文献   

13.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two circular DNA molecules designated as components A and B. The A component encodes the only viral protein, AL1, that is required for viral replication. We showed that AL1 interacts specifically with TGMV A and B DNA by using an immunoprecipitation assay for AL1:DNA complex formation. In this assay, a monoclonal antibody against AL1 precipitated AL1:TGMV DNA complexes, whereas an unrelated antibody failed to precipitate the complexes. Competition assays with homologous and heterologous DNAs established the specificity of AL1:DNA binding. AL1 produced by transgenic tobacco plants and by baculovirus-infected insect cells exhibited similar DNA binding activity. The AL1 binding site maps to 52 bp on the left side of the common region, a 235-bp region that is highly conserved between the two TGMV genome components. The AL1:DNA binding site does not include the putative hairpin structure that is conserved in the common regions or the equivalent 5' intergenic regions of all geminiviruses. These studies demonstrate that a geminivirus replication protein is a sequence-specific DNA binding protein, and the studies have important implications for the role of this protein in virus replication.  相似文献   

14.
R Lawson  P Cohen    D P Lane 《Journal of virology》1990,64(5):2380-2383
The simian virus 40 large T antigen (T) is a multifunctional phosphoprotein. We found that T-dependent simian virus 40 DNA replication is substantially inhibited by okadaic acid. This result suggests that DNA replication is activated by dephosphorylation in vitro. We show here that the target activated by dephosphorylation, which stimulates DNA replication, is T and that the phosphatase involved is protein phosphatase 2A.  相似文献   

15.
The RecA protein of Escherichia coli is required for SOS-induced mutagenesis in addition to its recombinational and regulatory roles. We have suggested that RecA might participate directly in targeted mutagenesis by binding preferentially to the site of the DNA damage (e.g. pyrimidine dimer) because of its partially unwound nature; DNA polymerase III will then encounter RecA-coated DNA at the lesion and might replicate across the damaged site more often but with reduced fidelity. In support of this proposal, we have found that the phenotype of wild-type and mutant RecA for mutagenesis correlates with capacity to bind to double-stranded DNA. Wild-type RecA binds more efficiently to ultraviolet (u.v.)-irradiated, duplex DNA than to non-irradiated DNA. The RecA441 (Tif) protein that is constitutive for mutagenesis binds extremely well to double-stranded DNA with no lesions, whereas the RecA430 protein that is defective in mutagenesis binds poorly even to u.v.-irradiated DNA. The RecA phenotype also correlates with capacity to use duplex DNA as a cofactor for cleavage of the LexA repressor protein for SOS-controlled operons. Wild-type RecA provides efficient cleavage of LexA only with u.v.-irradiated duplex DNA; RecA441 cleaves well with non-irradiated DNA; RecA430 gives very poor cleavage even with u.v.-irradiated DNA. We conclude that the interaction of RecA with damaged double-stranded DNA is likely to be a critical component of SOS mutagenesis and to define a pathway for the LexA cleavage reaction as well.  相似文献   

16.
S Zhang  F Grosse 《FEBS letters》1992,312(2-3):143-146
A helicase-like DNA unwinding activity was found in highly purified fractions of the calf thymus single-stranded DNA binding protein (ctSSB), also known as replication protein A (RP-A) or replication factor A (RF-A). This activity depended on the hydrolysis of ATP or dATP, and used CTP with a lower efficiency. ctSSB promoted the homologous DNA polymerase alpha to perform DNA synthesis on double-stranded templates containing replication fork-like structures. The rate and amount of DNA synthesis was found to be dependent on the concentration of ctSSB. At a 10-fold mass excess of ctSSB over double-stranded DNA, products of 200-600 nucleotides in length were obtained. This comprises or even exceeds the length of a eukaryotic Okazaki fragment. The ctSSB-associated DNA helicase activity is most likely a distinct protein rather than an inherent property of SSB, as inferred from titration experiments between SSB and DNA. The association of a helicase with SSB and the stimulatory action of this complex to the DNA polymerase alpha-catalyzed synthesis of double-stranded DNA suggests a cooperative function of the three enzymatic activities in the process of eukaryotic DNA replication.  相似文献   

17.
The fidelity of DNA replication is achieved in a multiplicative process encompassing nucleobase selection and insertion, removal of misinserted nucleotides by exonuclease activity, and enzyme dissociation from primer/templates that are misaligned due to mispairing. In this study, we have evaluated the effect of altering these kinetic processes on the dynamics of translesion DNA replication using the bacteriophage T4 replication apparatus as a model system. The effect of enhancing the processivity of the T4 DNA polymerase, gp43, on translesion DNA replication was evaluated using a defined in vitro assay system. While the T4 replicase (gp43 in complex with gp45) can perform efficient, processive replication using unmodified DNA, the T4 replicase cannot extend beyond an abasic site. This indicates that enhancing the processivity of gp43 does not increase unambiguously its ability to perform translesion DNA replication. Surprisingly, the replicase composed of an exonuclease-deficient mutant of gp43 was unable to extend beyond the abasic DNA lesion, thus indicating that molecular processes involved in DNA polymerization activity play the predominant role in preventing extension beyond the non-coding DNA lesion. Although neither T4 replicase complex could extend beyond the lesion, there were measurable differences in the stability of each complex at the DNA lesion. Specifically, the exonuclease-deficient replicase dissociates at a rate constant, k(off), of 1.1s(-1) while the wild-type replicase remains more stably associated at the site of DNA damage by virtue of a slower measured rate constant (k(off) 0.009s(-1)). The increased lifetime of the wild-type replicase suggests that idle turnover, the partitioning of the replicase from its polymerase to its exonuclease active site, may play an important role in maintaining fidelity. Further attempts to perturb the fidelity of the T4 replicase by substituting Mn(2+) for Mg(2+) did not significantly enhance DNA synthesis beyond the abasic DNA lesion. The results of these studies are interpreted with respect to current structural information of gp43 alone and complexed with gp45.  相似文献   

18.
Y Cao  R R Rowland    T Kogoma 《Journal of bacteriology》1993,175(22):7247-7253
In Escherichia coli rnhA mutants, several normally repressed origins (oriK sites) of DNA replication are activated. The type of DNA replication initiated from these origins, termed constitutive stable DNA replication, does not require DnaA protein or the oriC site, which are essential for normal DNA replication. It requires active RecA protein. We previously found that the lexA71(Def)::Tn5 mutation can suppress this RecA requirement and postulated that the derepression of a LexA regulon gene(s) leads to the activation of a bypass pathway, Rip (for RecA-independent process). In this study, we isolated a miniTn10spc insertion mutant that abolishes the ability of the lexA(Def) mutation to suppress the RecA requirement of constitutive stable DNA replication. Cloning and DNA sequencing analysis of the mutant revealed that the insertion occurs at the 3' end of the coding region of the polA gene, which encodes DNA polymerase I. The mutant allele, designated polA25::miniTn10spc, is expected to abolish the polymerization activity but not the 5'-->3' or 3'-->5' exonuclease activity. Thus, the Rip bypass pathway requires active DNA polymerase I. Since the lethal combination of recA(Def) and polA25::miniTn10spc could be suppressed by derepression of the LexA regulon only when DNA replication is driven by the oriC system, it was suggested that the bypass pathway has a specific requirement for DNA polymerase I at the initiation step in the absence of RecA. An accompanying paper (Y. Cao and T. Kogoma, J. Bacteriol. 175:7254-7259, 1993) describes experiments to determine which activities of DNA polymerase I are required at the initiation step and discusses possible roles for DNA polymerase in the Rip bypass pathway.  相似文献   

19.
The vaccinia virus D5 gene encodes a 90-kDa protein that is transiently expressed at early times after infection. Temperature-sensitive mutants with lesions in the D5 gene exhibit a fast-stop DNA- phenotype and are also impaired in homologous recombination. Here we report the overexpression of the D5 protein within the context of a vaccinia virus infection and its purification to apparent homogeneity. The purified protein has an intrinsic nucleoside triphosphatase activity which is independent of, and not stimulated by, any common nucleic acid cofactors. All eight common ribo- and deoxyribonucleoside triphosphates are hydrolyzed to the diphosphate form in the presence of a divalent cation. Implications for the role of D5 in viral DNA replication are addressed.  相似文献   

20.
High fidelity DNA polymerases maintain genomic fidelity through a series of kinetic steps that include nucleotide binding, conformational changes, phosphoryl transfer, polymerase translocation, and nucleotide excision. Developing a comprehensive understanding of how these steps are coordinated during correct and pro-mutagenic DNA synthesis has been hindered due to lack of spectroscopic nucleotides that function as efficient polymerase substrates. This report describes the application of a non-natural nucleotide designated 5-naphthyl-indole-2′-deoxyribose triphosphate which behaves as a fluorogenic substrate to monitor nucleotide incorporation and excision during the replication of normal DNA versus two distinct DNA lesions (cyclobutane thymine dimer and an abasic site). Transient fluorescence and rapid-chemical quench experiments demonstrate that the rate constants for nucleotide incorporation vary as a function of DNA lesion. These differences indicate that the non-natural nucleotide can function as a spectroscopic probe to distinguish between normal versus translesion DNA synthesis. Studies using wild-type DNA polymerase reveal the presence of a fluorescence recovery phase that corresponds to the formation of a pre-excision complex that precedes hydrolytic excision of the non-natural nucleotide. Rate constants for the formation of this pre-excision complex are dependent upon the DNA lesion, and this suggests that the mechanism of exonuclease proofreading is regulated by the nature of the formed mispair. Finally, spectroscopic evidence confirms that exonuclease proofreading competes with polymerase translocation. Collectively, this work provides the first demonstration for a non-natural nucleotide that functions as a spectroscopic probe to study the coordinated efforts of polymerization and exonuclease proofreading during correct and translesion DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号