首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Treatment of carrot roots with ethylene led to: (a) a doubling of the fructose-2,6-bisphosphate content; (b) a general increase in the concentration of glycolytic intermediates; and (c) an increase in the extractable activity of fructose-6-phosphate,2-kinase, the enzyme synthesizing fructose-2,6-bisphosphate from fructose-6-phosphate and adenosine triphosphate.  相似文献   

2.
Following electrophoresis of isolated, brush-border membranes of Hymenolepis diminuta on SDS-polyacrylamide gels, three distinct areas of alpha-naphthyl phosphate (NP) hydrolysis were detected; these corresponded to proteins with molecular weights of 106,800, 172,700, and greater than 340,000 Daltons. Hydrolysis of NP was inhibited by adenosine triphosphate, adenosine;5'-monophosphate, p-nitrophenyl-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, molybdate, ethylenediaminetetraacetate (EDTA), and ethyleneglycol-bis-(beta-amino-ethyl)-N,N'-tetraacetate (EGTA), but not by fluoride. Inhibition of NP hydrolysis by EDTA was relieved in the presence of Mg++ or Ca++. Heating the isolated, brush-border membrane in the presence of SDS for 5 min at 95 C destroyed all enzymatic activity. These characteristics indicated that the enzyme(s) responsible for NP hydrolysis (following separation of membrane proteins by SDS-polyacrylamide gel electrophoresis) were the same enzymes responsible for the phosphohydrolase activity associated with intact and solubilized, brush-border membrane preparations of H. diminuta.  相似文献   

3.
Enzyme activities associated with maize kernel amyloplasts   总被引:15,自引:8,他引:7       下载免费PDF全文
Activities of the enzymes of gluconeogenesis and of starch metabolism were measured in extracts of amyloplasts isolated from protoplasts derived from 14-day-old maize (Zea mays L., cv Pioneer 3780) endosperm. The enzymes triosephosphate isomerase, fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, phosphohexose isomerase, phosphoglucomutase, ADPG pyrophosphorylase, UDPG pyrophosphorylase, soluble and bound starch synthases, and branching enzyme were found to be present in the amyloplasts. Of the above enzymes, ADPG pyrophosphorylase had the lowest activity per amyloplast. Invertase, sucrose synthase and hexokinase were not detected in similar amyloplast preparations. Only a trace of the cytoplasmic marker enzyme alcohol dehydrogenase could be detected in purified amyloplast fractions. In separate experiments, purified amyloplasts were lysed and then supplied with radioactively labeled glucose-6-phosphate, glucose-1-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, glucose, fructose, sucrose, and 3-0-methylglucose in the presence of adenosine triphosphate or uridine triphosphate. Of the above, only the phosphorylated substrates were incorporated into starch. Incorporation into starch was higher with added uridine triphosphate than with adenosine triphosphate. Dihydroxyacetone phosphate was the preferred substrate for uptake by intact amyloplasts and incorporation into starch. In preliminary experiments, it appeared that glucose-6-P and fructose-1,6-bisphosphate may also be taken up by intact amyloplasts. However, the rate of uptake and incorporation into starch was relatively low and variable. Additional study is needed to determine conclusively whether hexose phosphates will cross intact amyloplast membranes. From these data, we conclude that: (a) Triose phosphate is the preferred substrate for uptake by intact amyloplasts. (b) Amyloplasts contain all enzymes necessary to convert triose phosphates into starch. (c) Sucrose breakdown must occur in the cytosol prior to carbohydrate transfer into the amyloplasts. (d) Under the conditions of assay, amyloplasts are unable to convert glucose or fructose to starch. (e) Uridine triphosphate may be the preferred nucleotide for conversion of hexose phosphates to starch at this stage of kernel development.  相似文献   

4.
By selecting for growth on glycerol, but absence of growth on glucose, a mutant of Saccharomyces carlsbergensis was isolated which does not grow on glucose, fructose, mannose, or sucrose, which shows long-term adaptation to maltose, but which can grow normally on galactose, ethanol, or glycerol. In the mutant, fructose diphosphatase is not inactivated after the addition of glucose, fructose or mannose to the medium, resulting in the simultaneous presence of fructose diphosphatase and phosphofructokinase activity. Under these conditions, a cycle is probably catalyzed between fructose-6-phosphate and fructose-1,6-diphosphate, resulting in the net consumption of adenosine triphosphate and an immediate stop of protein synthesis.  相似文献   

5.
Amir J  Cherry JH 《Plant physiology》1972,49(6):893-897
A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate.  相似文献   

6.
An assay was developed for phosphofructokinase-1 (PFK-1) using capillary electrophoresis (CE). In the glycolytic pathway, this enzyme catalyzes the rate-limiting step from fructose-6-phosphate and magnesium-bound adenosine triphosphate (Mg–ATP) to fructose-1,6-bisphosphate and magnesium-bound adenosine diphosphate (Mg–ADP). This enzyme has recently become a research target because of the importance of glycolysis in cancer and obesity. The CE assay for PFK-1 is based on the separation and detection by ultraviolet (UV) absorbance at 260 nm of Mg–ATP and Mg–ADP. The separation was enhanced by the addition of Mg2+ to the separation buffer. Inhibition studies of PFK-1 by aurintricarboxylic acid and palmitoyl coenzyme A were also performed. An IC50 value was determined for aurintricarboxylic acid, and this value matched values in the literature obtained using coupled spectrophotometric assays. This assay for PFK-1 directly monitors the enzyme-catalyzed reaction, and the CE separation reduces the potential of spectral interference by inhibitors.  相似文献   

7.
W. Müller  K. Wegmann 《Planta》1978,141(2):159-163
Sucrose phosphate synthetase (EC 2.4.1.14) is the key enzyme for sucrose synthesis in Dunaliella tertiolecta. It has been partially purified and characterized. The enzyme contains one binding site for uridine diphosphoglucose and two binding sites for fructose-6-phosphate; it is allosterically controlled by fructose-6-phosphate. Inorganic phosphate stimulates the enzymic activity, particularly in the presence of higher concentrations of fructose-6-phosphate. Sucrose phosphate synthetase is not halophilic or halotolerant. The temperature dependence of the enzymic activity cannot fully explain the observed increase in sucrose synthesis in Dunaliella by elevated temperature.Abbreviations F-6-P fructose 6-phosphate - UDP uridine biphosphate - UDPG uridine biphosphoglucose  相似文献   

8.
Summary Two methods to determine fructose-1,6-diphosphatase activity histochemically were tested on liver, intestine, skeletal muscle and heart of rats. Using lead ions to precipitate inorganic phosphate, according to Wachstein and Meisel, the addition of the specific inhibitor adenosine monophosphate caused an increase of phosphate precipitation. Therefore this method is often not suitable. A coupled assay, used to detect fructose-6-phosphate formed after conversion to glucose-6-phosphate (which in its turn may reduce tetrazolium dyes in the glucose-6-phosphate dehydrogenase reaction), was found to be satisfactory in liver to demonstrate specific fructose-1,6-diphosphatase activity, since adenosine monophosphate was strongly inhibitory. In intestine acid- and alkaline phosphatases, however, were found to interfere. In the latter organ, added adenosine monophosphate itself strongly stimulates formazan formation, which is probably due to high xanthine oxidase activity.In muscle, where a high aldolase activity is present, monoiodoacetate must be included in the incubation medium. Since fructose-1,6-diphosphatase activity in muscle is low compared with that of liver, the results obtained with muscle are often difficult to interpret.  相似文献   

9.
A comparison of branchial enzyme profiles indicates that the gills of Periophthalmodon schlosseri would have a greater capacity for energy metabolism through glycolysis than those of Boleophthalmus boddaerti. Indeed, after exposure to hypoxia, or anoxia, there were significant increases in the lactate content in the gills of P. schlosseri. In addition, exposure to hypoxia or anoxia significantly lowered the glycogen level in the gills of this mudskipper. It can be deduced from these results that the glycolytic flux was increased to compensate for the decrease in ATP production through anaerobic glycolysis. Different from P. schlosseri, although there was an increase in lactate production in the gills of B. boddaerti exposed to hypoxia, there was no significant change in the branchial glycogen content, indicating that a reversed Pasteur effect might have occurred under such conditions. In contrast, anoxia induced an accumulation of lactate and a decrease in glycogen in the gills of B. boddaerti. Although lactate production in the gills of these mudskippers during hypoxia was inhibited by iodoacetate, the decreases in branchial glycogen contents could not account for the amounts of lactate formed. The branchial fructose-2,6-bisphosphate contents of these mudskippers exposed to hypoxia or anoxia decreased significantly, leaving phosphofructokinase and glycolytic rate responsive to cellular energy requirements under such conditions. The differences in response in the gills of B. boddaerti and P. schlosseri to hypoxia were possibly related to the distribution of phosphofructokinase between the free and bound states.Abbreviations ADP adenosine diphosphate - ALD aldolase - ALT alanine transaminase - AST aspartate transaminase - ATP adenosine triphosphate - CS citrate synthase - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F6P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - FBPase fructose-1,6-bisphosphatese - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glutamate dehydrogenase - -GDH -glycerophosphate dehydrogenase - GPase glycogen phosphorylase - HK hexokinase - HOAD 3-hydroxyacyl-CoA dehydrogenase - IDH isocitrate dehydrogenase - IOA iodoacetic acid - LDH lactate dehydrogenase - LO lactate oxidizing activity - MDH malate dehydrogenase - 3-PG 3-phosphoglyceric acid - PEP phosphoenolpyruvate - PEPCK phosphoenolpyruvate carboxykinase - PGI phosphoglucose isomerase - PGK phosphoglycerate kinase - PFK 6-phosphofructo-1-kinase - PIPES piperazine-N, N-bis-(2-ethanesulphonic acid) - PK pyruvate kinase - PMSF phenylmethylsulphonyl fluoride - PR pyrurate reducing activity - SE standard error - SW seawater - TPI triosephosphate isomerase  相似文献   

10.
Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12   总被引:9,自引:0,他引:9  
Summary We have previously proposed that 2-ketobutyrate is an alarmone in Escherichia coli. Circumstantial evidence suggested that the target of 2-ketobutyrate was the phosphoenol pyruvate: glycose phosphotransferase system (PTS). We demonstrate here that the phosphorylated metabolites of the glycolytic pathway experience a dramatic downshift upon addition of 2-ketobutyrate (or its analogues). In particular, fructose-1,6-diphosphate, glucose-6-phosphate, fructose-6-phosphate and acetyl-CoA concentrations drop by a factor of 10, 3, 4, and 5 respectively. This result is consistent with (i) an inhibition of the PTS by 2-ketobutyrate, (ii) a control of metabolism by fructose-1,6-diphosphate. Since fructose-1,6-diphosphate is an activator of phosphoenol pyruvate carboxylase and of pyruvate kinase, the concentration of their common substrate, phosphoenol pyruvate, does not decrease in parallel.Abbreviations G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1-6DP fructose-1,6-diphosphate - PEP phosphoenol pyruvate  相似文献   

11.
The 1-phosphofructokinase (1-PFK, EC 2.7.1.56) from Pseudomonas putida was partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. In its kinetic properties, this enzyme resembled the 1-PFK's from other bacteria. With the substrates fructose-1-phosphate (F-1-P) and adenosine triphosphate (ATP) Michaelis-Menten kinetics were observed, the Km for one substrate being unaffected by a variation in the concentration of the other substrate. At pH 8.0, the Km values for F-1-P and ATP were 1.64 X 10(-4) M and 4.08 X 10(-4) M, respectively. At fixed concentrations of F-1-P and ATP, an increase in the Mg2+ resulted in sigmoidal kinetics. Activity was inhibited by ATP when the ratio of ATP:Mg2+ was greater than 0.5 suggesting that ATP:2 Mg2+ was the substrate and free ATP was inhibitory. Activity of 1-PFK was stimulated by K+ and to a lesser extent by NH4+ and Na+. The reaction rate was unaffected by 2 mM K2HPO4, pyruvate, phosphoenolpyruvate, adenosine monophosphate, adenosine 3',5'-cyclic monophosphate, fructose-6-phosphate, glucose-6-phosphate, 6-phosphogluconate, 2-keto-3-deoxy-6-phosphogluconate, or citrate. The results indicated that the 1-PFK from P. putida was not allosterically regulated by a number of metabolites which may play an important role in the catabolism of D-fructose.  相似文献   

12.
K A Moniem 《Acta anatomica》1980,108(3):301-309
The activity of enzymes hydrolyzing sodium-beta-glycerophosphate, adenosine triphosphate, adenosine monophosphate, and glucose-6-phosphate in the epididymides of adult ram, rabbit, rat and hamster has been investigated histochemically. The enzymes hydrolyzing sodium-beta-glycerophosphate, adenosine triphosphate and adenosine monophosphate were rather similar in their distribution in the intertubular connective tissue of the epididymides of the four species studied. However, the distribution and activity of these enzymes in the stereocilia varied. There was a high activity in the stereocilia of the middle segments of ram, rabbit and rat and in the proximal part of the terminal segment of hamster epididymides. Glucose-6-phosphatase was distributed homogeneously in the epithelial cells of the epididymides throughout the duct. The possible functions of these enzymes in the mammalian epididymis are briefly discussed.  相似文献   

13.
The production and characterization of covalent amyloglucosidase-antibody conjugates using anti-human serum albumin immunoglobulin G are described. The conjugation procedure is based on the periodate oxidation of carbohydrate moieties that are covalently linked to the enzyme, followed by Schiff's base formation with amino residues on IgG. An ultrasensitive enzyme cycling assay for glucose, the product of maltose cleavage by amyloglucosidase, was developed in order to increase the sensitivity of detecting the enzyme-antibody conjugate. The cycling assay, which allows the accurate measurement of glucose in the picomole range, involves an enzymatic conversion of glucose to glucose-6-phosphate and then isomerization to fructose-6-phosphate. A futile cycle between fructose-6-phosphate and fructose-1,6-diphosphate results in accumulation of adenosine diphosphate at a rate proportional to the original glucose concentration. The rate was monitored by a spectrophotometric system involving pyruvate kinase, phospho(enol)pyruvate, lactate dehydrogenase, and diphosphopyridine nucleotide.  相似文献   

14.
Bifidobacterium bifidum, in contrast to other bifidobacterial species, is auxotrophic for N-acetylglucosamine. Growth experiments revealed assimilation of radiolabelled N-acetylglucosamine in bacterial cell walls and in acetate, an end-product of central metabolism via the bifidobacterial d-fructose-6-phosphate shunt. While supplementation with fructose led to reduced N-acetylglucosamine assimilation via the d-fructose-6-phosphate shunt, no significant difference was observed in levels of radiolabelled N-acetylglucosamine incorporated into cell walls. Considering the central role played by glutamine fructose-6-phosphate transaminase (GlmS) in linking the biosynthetic pathway for N-acetylglucosamine to hexose metabolism, the GlmS of Bifidobacterium was characterized. The genes encoding the putative GlmS of B. longum DSM20219 and B. bifidum DSM20082 were cloned and sequenced. Bioinformatic analyses of the predicted proteins revealed 43% amino acid identity with the Escherichia coli GlmS, with conservation of key amino acids in the catalytic domain. The B. longum GlmS was over-produced as a histidine-tagged fusion protein. The purified C-terminal His-tagged GlmS possessed glutamine fructose-6-phosphate amidotransferase activity as demonstrated by synthesis of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. It also possesses an independent glutaminase activity, converting glutamine to glutamate in the absence of fructose-6-phosphate. This is of interest considering the apparently reduced coding potential in bifidobacteria for enzymes associated with glutamine metabolism. S. Foley and E. Stolarczyk contributed equally to this work  相似文献   

15.
16.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP, EC 2.7.1.90) from endosperm of developing wheat (Triticum aestivum L.) grains was purified to apparent homogeneity with about 52% recovery using ammonium sulfate fractionation, ion exchange chromatography on DEAE-cellulose and gel filtration through Sepharose-CL-6B. The purified enzyme, having a molecular weight of about 170,000, was a dimer with subunit molecular weights of 90,000 and 80,000, respectively. The enzyme exhibited maximum activity at pH 7.5 and was highly specific for pyrophosphate (PPi). None of the nucleoside mono-, di- or triphosphate could replace PPi as a source of energy and inorganic phosphate (Pi). Similarly, the enzyme was highly specific for fructose-6-phosphate. It had a requirement for Mg2+ and exhibited hyperbolic kinetics with all substrates including Mg2+. Km values as determined by Lineweaver-Burk plots were 322, 31, 139, and 129 micromolar, respectively, for fructose-6-phosphate, PPi, fructose-1,6-bisphosphate and Pi. Kinetic constants were determined in the presence of fructose-2,6-bisphosphate, which stimulated activity about 20-fold and increased the affinity of the enzyme for its substrates. Initial velocity studies indicated kinetic mechanism to be sequential. At saturating concentrations of fructose-2,6-bisphosphate (1 micromolar), Pi strongly inhibited PFP; the inhibition being mixed with respect to both fructose-6-phosphate and PPi, with Ki values of 0.78 and 1.2 millimolar, respectively. The inhibition pattern further confirmed the mechanism to be sequential with random binding of the substrates. Probable role of PFP in endosperm of developing wheat grains (sink tissues) is discussed.  相似文献   

17.
In the presence of its allosteric activator GDP, the major phosphofructokinase-1 from Escherichia coli K12 follows Michaelis—Menten kinetics. The kinetic behavior observed at steady-state using different concentrations of the substrates ATP and fructose-6-phosphate and the pattern of inhibition by the substrate analogs adenylyl-(β,γ-methylene)-diphosphonate and D-arabinose-5-phosphate are consistent with a random sequential mechanism in rapid equilibrium, rather than with an ordered binding as was suggested earlier. However, ATP and fructose-6-phosphate do not bind independently to the same active site, since the apparent affinity for one substrate is decreased about 20-fold when the other substrate is already bound. The antagonism between ATP and fructose-6-phosphate shows that a negative interaction occurs during the reaction with E. coli phosphofructokinase-1 which must be considered in addition to its allosteric properties.  相似文献   

18.
Level of photosynthetic intermediates in isolated spinach chloroplasts   总被引:15,自引:12,他引:3       下载免费PDF全文
Latzko E  Gibbs M 《Plant physiology》1969,44(3):396-402
The level of intermediates of the photosynthetic carbon cycle was measured in intact spinach chloroplasts in an attempt to determine the cause of the induction lag in CO2 assimilation. In addition, transient changes in the level of the intermediates were determined as affected by a light-dark period and by the addition of an excess amount of bicarbonate during a period of steady photosynthesis. Assayed enzymically were: ribulose 1,5-diphosphate, pentose monophosphates (mixture of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate, hexose monophosphates (mixture of glucose 6-phosphate, glucose 1-phosphate, and fructose 6-phosphate), glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, glycerate acid 3-phosphate, a mixture of fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP).  相似文献   

19.
Summary The distribution of acid phosphatase, non-specific esterase (A, B and C types) and -glucuronidase is examined in the placenta and foetal membranes of the horse, sheep, cat, dog, ferret, rat, rabbit, guinea-pig and human, and in the yolk-sac of the chick, the oviviviparous fish Limia maculata, and the human.Hydrolase activity in the trophoblast is almost constantly present between maternal and foetal circulations, and may be associated with protein and lipid degradation prior to passage to the foetus.Absorption in the yolk-sac of all species examined is associated with hydrolase activities, the rodent inverted yolk-sac appearing to be most active. Hydrolase activity is also seen in the non-placental chorion, particularly that of the sheep, and of the horse between the bases of the primary villi, enzyme activity here possibly being associated with absorption of uterine milk which is copious in both of these species.Histochemical findings suggest, in the haematoma region of the carnivores, the possibility of iron transport by conjugation to protein and excretion in the maternal epithelium, followed by active absorption and de-conjugation in the trophoblast.The significance of the histochemical findings in the decidua, rabbit trophoblastic multinucleate bodies, ferret thickened maternal endothelium, and fibrinoid capsule in the rat, is also discussed.  相似文献   

20.
Effects of iloprost, which is a stable prostacyclin analogue, on the ischemic myocardium were examined in the open-chest dog heart, in terms of biochemical parameters. Ischemia was initiated by ligating the left anterior descending coronary artery. When the coronary artery was ligated for 3 min, the levels or glycogen, fructose-1,6-diphosphate (FDP), adenosine triphosphate and creatinephosphate decreased, and the levels of glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), lactate, adenosine diphosphate and adenosine monophosphate increased. During ischemia, therefore, energy charge potential was significantly decreased from 0.89±0.01 to 0.82±0.01, and ([G6P]+[F6P])/[FDP] and [lactate]/[pyruvate] ratios were significantly increased from 1.75±0.30 to 29.05±5.70 and 13±3 to 393±112, respectively. Iloprost (0.1, 0.3, or 1 g·kg–1) was injected intravenously 5 min before the onset of ischemia. Iloprost (0.1, 0.3, and 1 g·kg–1) reduced the ischemia-induced decrease in energy charge potential to 94, 74, and 86%, respectively, the increase in ([G6P]+[F6P]/[FDP] to 38, 29, 32%, respectively, and the increase in [lactate]/[pyruvate] to 67, 45, 65%, respectively. These results suggest that iloprost lessens the myocardial metabolic derangements produced by ischemia, and the most potent effect was obtained at the dose of 0.3 g·kg–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号