首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nisin depletes ATP and proton motive force in mycobacteria   总被引:5,自引:0,他引:5  
This study examined the inhibitory effect of nisin and its mode of action against Mycobacterium smegmatis, a non-pathogenic species of mycobacteria, and M. bovis-Bacill Carmette Guerin (BCG), a vaccine strain of pathogenic M. bovis. In agar diffusion assays, 2.5 mg ml(-1) nisin was required to inhibit M. bovis-BCG. Nisin caused a slow, gradual, time- and concentration-dependent decrease in internal ATP levels in M. bovis-BCG, but no ATP efflux was detected. In mycobacteria, nisin decreased both components of proton motive force (membrane potential, Delta Psi and Delta pH) in a time- and concentration-dependent manner. However, mycobacteria maintained their intracellular ATP levels during the initial time period of Delta Psi and Delta pH dissipation. These data suggest that the mechanism of nisin in mycobacteria is similar to that in food-borne pathogens.  相似文献   

2.
In this study, the interaction of Rifampicin (RIF) with cellular glutathione (GSH) in Mycobacterium smegmatis has been investigated. Minimum inhibitory concentration of RIF for M. smegmatis was demonstrated to be 17 micrograms ml-1 medium. Three subinhibitory concentrations viz. 5, 10 and 15 micrograms RIF ml-1 medium were used to study its interaction with cellular non protein thiols (NPSH). Maximum depletion (57.8%) in NPSH levels [5, 5'-dithiobis (2-nitrobenzoic acid) assay] was observed on second day when the cells were grown in the presence of 15 micrograms RIF ml-1 medium. When the same samples were assayed for GSH levels (glyoxylase assay) the depletion of GSH levels by RIF was still observed, confirming the earlier findings. GSH depletion paralleled with growth inhibition and reached to normal level on 5th day of growth. Cellular depletion of GSH was also observed when 3 day grown cells of M. smegmatis were exposed to various concentrations of RIF (20, 40 and 60 micrograms ml-1 medium) for different time intervals. Maximum depletion of NPSH levels was observed when 3 day grown cultures were treated with 60 micrograms RIF ml-1 medium for a period of 6 h. The results of this study clearly demonstrate that RIF depletes cellular GSH levels regardless of the fact that the drug is included in the medium before inoculating it or after the cells have been grown for a period of three days. The depletion of cellular GSH levels by RIF in M. smegmatis may contribute towards its antituberculous activity.  相似文献   

3.
The effects of nisin and monolaurin, alone and in combination, were investigated on Bacillus licheniformis spores in milk at 37 degrees C. In the absence of inhibitors, germinated spores developed into growing vegetative cells and started sporulation at the end of the exponential phase. In the presence of nisin (25 IU ml-1), spore outgrowth was inhibited (4 log10 reduction at 10 h). Regrowth appeared between 10 and 24 h and reached a high population level (1.25 x 10(8) cfu ml-1) after 7 d. Monolaurin (250 micrograms ml-1) had a bacteriostatic effect during the first 10 h but thereafter, regrowth occurred slowly with a population level after 7 d (4 x 10(5) cfu ml-1) lower than that of nisin. Different combined effects of nisin (between 0 and 42 IU ml-1), monolaurin (ranging from 0 to 300 micrograms ml-1), pH values (between 5.0 and 7.0) and spore loads (10(3), 10(4), 10(5) spores ml-1) were investigated using a Doehlert matrix in order to study the main effects of these factors and the different interactions. Results were analysed using the Response Surface Methodology (RSM) and indicated that nisin and monolaurin had no action on spores before germination; only pH values had a significant effect (P < or = 0.001), i.e. spore count decreased as the pH value increased in relation to germination. Sublethal concentrations of nisin (30 IU ml-1) and monolaurin (100 micrograms ml-1) in combination acted synergistically on outgrown spores and vegetative cells, showing total inhibition at pH 6.0, without regrowth, within 7 d at 37 degrees C.  相似文献   

4.
The presence of psychrotrophic enterotoxigenic Bacillus cereus in ready-to-serve meats and meat products that have not been subjected to sterilization treatment is a public health concern. A study was undertaken to determine the survival, growth, and diarrheal enterotoxin production characteristics of four strains of psychrotrophic B. cereus in brain heart infusion (BHI) broth and beef gravy as affected by temperature and supplementation with nisin. A portion of unheated vegetative cells from 24-h BHI broth cultures was sensitive to nisin as evidenced by an inability to form colonies on BHI agar containing 10 micrograms of nisin/ml. Heat-stressed cells exhibited increased sensitivity to nisin. At concentrations as low as 1 microgram/ml, nisin was lethal to B. cereus, the effect being more pronounced in BHI broth than in beef gravy. The inhibitory effect of nisin (1 microgram/ml) was greater on vegetative cells than on spores inoculated into beef gravy and was more pronounced at 8 degrees C than at 15 degrees C. Nisin, at a concentration of 5 or 50 micrograms/ml, inhibited growth in gravy inoculated with vegetative cells and stored at 8 or 15 degrees C, respectively, for 14 days. Growth of vegetative cells and spores of B. cereus after an initial period of inhibition is attributed to loss of activity of nisin. One of two test strains produced diarrheal enterotoxin in gravy stored at 8 or 15 degrees C within 9 or 3 days, respectively. Enterotoxin production was inhibited in gravy supplemented with 1 microgram of nisin/ml and stored at 8 degrees C for 14 days; 5 micrograms of nisin/ml was required for inhibition at 15 degrees C. Enterotoxin was not detected in gravy in which less than 5.85 log10 CFU of B. cereus/ml had grown. Results indicate that as little as 1 microgram of nisin/ml may be effective in inhibiting or retarding growth of and diarrheal enterotoxin production by vegetative cells and spores of psychrotrophic B. cereus in beef gravy at 8 degrees C, a temperature exceeding that recommended for storage or for most unpasteurized, ready-to-serve meat products.  相似文献   

5.
目的通过观察髓样分化因子88(myeloid differentiation factor 88,myd88)抑制剂ST2825对重组耻垢分枝杆菌感染的THP-1细胞的炎性分泌功能的抑制,来探讨髓样分化因子88在分枝杆菌促巨噬细胞分泌炎性因子功能中的作用。方法使用Myd88的抑制剂ST2825干预重组耻垢杆菌感染的THP-1细胞为实验模型,分为三组:实验组(THP-1细胞+重组耻垢分枝杆菌+ST2825)、对照组(THP-1细胞+重组耻垢分枝杆菌)、空白组(THP-1细胞),用ELISA法检测三组TNF-α、IL-12和IL-6的分泌情况。结果实验组的TNF-α、IL-12和IL-6的量较对照组显著减少,其两者P值〈0.05,差异具有统计学意义。结论髓样分化因子88抑制剂ST2825可抑制THP-1细胞的炎性分泌功能。  相似文献   

6.
Nisin, a bacteriocin produced by some strains of Lactococcus lactis, acts against foodborne pathogen Listeria monocytogenes. A single exposure of cells to nisin can generate nisin-resistant (Nisr) mutants, which may compromise the use of nisin in the food industry. The objective of this research was to compare the heat resistance of Nisr and wild type (WT) Listeria monocytogenes. The synergistic effect of heat-treatment (55 degrees C) and nisin (500 IU ml-1) on the Nisr cells and the WT L. monocytogenes Scott A was also studied. When the cells were grown in the absence of nisin, there was no significant (alpha = 0.05) difference in heat resistance between WT and Nisr cells of L. monocytogenes at 55, 60 and 65 degrees C. However, when the Nisr cells were grown in the presence of nisin, they were more sensitive to heat at 55 degrees C than the WT cells. The D-values at 55 degrees C were 2.88 and 2.77 min for Nisr ATCC 700301 and ATCC 700302, respectively, which was significantly (alpha = 0.05) lower than the D-value for WT, 3.72 min. When Nisr cells were subjected to a combined treatment of heat and nisin, there was approximately a four log reduction during the first 7 min of treatment.  相似文献   

7.
Effects of nisin on growth of bacteria attached to meat.   总被引:10,自引:6,他引:4       下载免费PDF全文
Nisin had an inhibitory effect on gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, and Streptococcus lactis) but did not have an inhibitory effect on gram-negative bacteria (Serratia marcescens, Salmonella typhimurium, and Pseudomonas aeruginosa) attached to meat. Nisin delayed bacterial growth on meats which were artificially inoculated with L. monocytogenes or Staphylococcus aureus for at least 1 day at room temperature. If the incubation temperature was 5 degrees C, growth of L. monocytogenes was delayed for more than 2 weeks, and growth of Staphylococcus aureus did not occur. We also found that the extractable activity of nisin decreased rapidly when the meats were incubated at ambient temperatures and that this decrease was inversely related to the observed inhibitory effect. These findings disclosed that nisin delays the growth of some gram-positive bacteria attached to meat. However, nisin alone may not be sufficient to prevent meat spoilage because of the presence of gram-negative and other nisin-resistant gram-positive bacteria.  相似文献   

8.
Effects of nisin on growth of bacteria attached to meat   总被引:7,自引:0,他引:7  
Nisin had an inhibitory effect on gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, and Streptococcus lactis) but did not have an inhibitory effect on gram-negative bacteria (Serratia marcescens, Salmonella typhimurium, and Pseudomonas aeruginosa) attached to meat. Nisin delayed bacterial growth on meats which were artificially inoculated with L. monocytogenes or Staphylococcus aureus for at least 1 day at room temperature. If the incubation temperature was 5 degrees C, growth of L. monocytogenes was delayed for more than 2 weeks, and growth of Staphylococcus aureus did not occur. We also found that the extractable activity of nisin decreased rapidly when the meats were incubated at ambient temperatures and that this decrease was inversely related to the observed inhibitory effect. These findings disclosed that nisin delays the growth of some gram-positive bacteria attached to meat. However, nisin alone may not be sufficient to prevent meat spoilage because of the presence of gram-negative and other nisin-resistant gram-positive bacteria.  相似文献   

9.
The influence of nisin on the proton motive force (delta p) generated by glucose-energized cells of the obligate putrefactive anaerobe Clostridium sporogenes PA 3679 was determined. The components of delta p, the transmembrane potential (delta psi) and the pH gradient (delta pH), were determined from the distributions of the lipophilic cation [3H]TPP+ ([3H]tetraphenylphosphonium bromide) and [14C]salicylic acid, respectively. The cells maintained a constant delta p of -111 mV, consisting of a delta pH of 0.4 to 1.0 pH units at an external pH of 5 to 7 and a delta psi of -60 to -88 mV. Nisin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N'-dicyclohexylcarbodiimide (DCCD) at pH 6.0 elicited the complete release of preaccumulated [3H]tetraphenylphosphonium bromide and [14C]salicylic acid, with a concomitant depletion of delta psi and delta pH. Nisin and DCCD caused rapid drops in intracellular ATP levels from 1.2 to 0.01 and 0.06 nmol/mg of cells (dry weight), respectively. Cells exposed to nisin and DCCD lost the ability to form colonies, thus suggesting that delta psi and delta pH are necessary for cell viability. The data suggest that depletion of delta p and exhaustion of cellular ATP reserves are the basis for nisin inhibition of C. sporogenes PA 3679.  相似文献   

10.
Nisin synthesis by Streptococcus lactis, strain MGU, grown as a combined culture together with Proteus vulgaris and Bacillus mesentericus under stationary conditions or with stirring does not depend on the quantity of inoculated associated cells. Nisin synthesis in the combined culture drops down by 10-20% at the initial pH 7.5 of the growth medium which is unfavourable for S. lactis producing nisin. The level of nisin biosynthesis does not rise when the pH of the medium is adjusted (either naturally or artificially) to 6.6-6.8 in the presence of glucose and yeast autolysate. S. lactis inhibits the growth of B. mesentericus when grown together with it whereas P. vulgaris inhibits the growth of S. lactis in their combined culture.  相似文献   

11.
The influence of nisin on the proton motive force (delta p) generated by glucose-energized cells of the obligate putrefactive anaerobe Clostridium sporogenes PA 3679 was determined. The components of delta p, the transmembrane potential (delta psi) and the pH gradient (delta pH), were determined from the distributions of the lipophilic cation [3H]TPP+ ([3H]tetraphenylphosphonium bromide) and [14C]salicylic acid, respectively. The cells maintained a constant delta p of -111 mV, consisting of a delta pH of 0.4 to 1.0 pH units at an external pH of 5 to 7 and a delta psi of -60 to -88 mV. Nisin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N'-dicyclohexylcarbodiimide (DCCD) at pH 6.0 elicited the complete release of preaccumulated [3H]tetraphenylphosphonium bromide and [14C]salicylic acid, with a concomitant depletion of delta psi and delta pH. Nisin and DCCD caused rapid drops in intracellular ATP levels from 1.2 to 0.01 and 0.06 nmol/mg of cells (dry weight), respectively. Cells exposed to nisin and DCCD lost the ability to form colonies, thus suggesting that delta psi and delta pH are necessary for cell viability. The data suggest that depletion of delta p and exhaustion of cellular ATP reserves are the basis for nisin inhibition of C. sporogenes PA 3679.  相似文献   

12.
Nisin A is the most widely characterized lantibiotic investigated to date. It represents one of the many antimicrobial peptides which have been the focus of much interest as potential therapeutic agents. This has resulted in the search for novel lantibiotics and more commonly, the engineering of novel variants from existing peptides with a view to increasing their activity, stability and solubility.The aim of this study was to compare the activities of nisin A and novel bioengineered hinge derivatives, nisin S, nisin T and nisin V. The microtitre alamar blue assay (MABA) was employed to identify the enhanced activity of these novel variants against M. tuberculosis (H37Ra), M. kansasii (CIT11/06), M. avium subsp. hominissuis (CIT05/03) and M. avium subsp. paratuberculosis (MAP) (ATCC 19698). All variants displayed greater anti-mycobacterial activity than nisin A. Nisin S was the most potent variant against M. tuberculosis, M. kansasii and M. avium subsp. hominissuis, retarding growth by a maximum of 29% when compared with nisin A. Sub-species variations of inhibition were also observed with nisin S reducing growth of Mycobacterium avium subsp. hominissuis by 28% and Mycobacterium avium subsp. paratuberculosis by 19% and nisin T contrastingly reducing growth of MAP by 27% and MAC by 16%.Nisin S, nisin T and nisin V are potent novel anti-mycobacterial compounds, which have the capacity to be further modified, potentially generating compounds with additional beneficial characteristics. This is the first report to demonstrate an enhancement of efficacy by any bioengineered bacteriocin against mycobacteria.  相似文献   

13.
The basal proton motive force (PMF) levels and the influence of the bacteriocin nisin on the PMF were determined in Listeria monocytogenes Scott A. In the absence of nisin, the interconversion of the pH gradient (Z delta pH) and the membrane potential (delta psi) led to the maintenance of a fairly constant PMF at -160 mV over the external pH range 5.5 to 7.0. The addition of nisin at concentrations of greater than or equal to 5 micrograms/ml completely dissipated PMF in cells at external pH values of 5.5 and 7.0. With 1 microgram of nisin per ml, delta pH was completely dissipated but delta psi decreased only slightly. The action of nisin on PMF in L. monocytogenes Scott A was both time and concentration dependent. Valinomycin depleted only delta pH, whereas nigericin and carbonyl cyanide m-chlorophenylhydrazone depleted only delta psi, under conditions in which nisin depleted both. Four other L. monocytogenes strains had basal PMF parameters similar to those of strain Scott A. Nisin (2.5 micrograms/ml) also completely dissipated PMF in these strains.  相似文献   

14.
15.
Nisin, a small antimicrobial protein, was tested for its bactericidal action against Listeria monocytogenes and Bacillus cereus and a typical biphasic reduction of the viable count was observed. The reduction was most fast during the first 10 min of exposure, while the viable count remained stable in the last part of the exposure period. Bacillus cereus was more sensitive towards nisin than L. monocytogenes and the inhibitory effect of nisin was stronger towards cells cultivated and exposed at 8 degrees C than towards cells cultivated and exposed at 20 degrees C. Combining nisin with sublethal doses of carvacrol resulted in an increased reduction in the viable count of both organisms, indicating synergy between nisin and carvacrol. Addition of lysozyme as a third preservative factor increased the synergistic effect between nisin and carvone, especially in the last part of the exposure period.  相似文献   

16.
Nisin A is a pentacyclic antibiotic peptide produced by various Lactococcus lactis strains. Nisin displays four different activities: (i) it autoinduces its own synthesis; (ii) it inhibits the growth of target bacteria by membrane pore formation; (iii) it inhibits bacterial growth by interfering with cell wall synthesis; and, in addition, (iv) it inhibits the outgrowth of spores. Here we investigate the structural requirements and relevance of the N-terminal thioether rings of nisin by randomization of the ring A and B positions. The data demonstrate that: (i) mutation of ring A results in variants with enhanced activity and a modulated spectrum of target cells; (ii) for the cell growth-inhibiting activity of nisin, ring A is rather promiscuous with respect to its amino acid composition, whereas the bulky amino acid residues in ring B abolish antimicrobial activity; (iii) C-terminally truncated nisin A mutants lacking rings D and E retain significant antimicrobial activity but are unable to permeabilize the target membrane; (iv) the dehydroalanine in ring A is not essential for the inhibition of the outgrowth of Bacillus cells; (v) some ring A mutants have significant antimicrobial activities but have decreased autoinducing activities; (vi) the opening of ring B eliminates antimicrobial activity while retaining autoinducing activity; and (vii) some ring A mutants escape the nisin immune system(s) and are toxic to the nisin-producing strain NZ9700. These data demonstrate that the various activities of nisin can be engineered independently and provide a basis for the design and synthesis of tailor-made analogs with desired activities.  相似文献   

17.
Specific nisin polyclonal antibodies (PAb) were produced in rabbits using nisin Z produced by Lactococcus lactis subsp. lactis biovar diacetylactis UL 719. Antisera were obtained from white female New Zealand rabbits that were first immunized with a nisin Z-keyhole limpet haemocyanin conjugate and boosted with free nisin Z. Nisin-specific PAb were purified by affinity chromatography with a yield of 15 mg specific antinisin 100 ml-1 serum. The detection limit of the ELISA test for nisin Z was 0.75 ng ml-1 in buffer but was 1.7 and 3.5 ng ml-1 in milk and complex media broth spiked (5, 10, 20 microg ml-1) with nisin Z, respectively. In nisin Z-spiked samples, the average concentration was between 90 and 107% of actual added amount. In contrast, when the bioassay (microtitration method) was used, only 50-63% of nisin Z biological activity could be detected. In addition, the affinity-purified nisin PAb, antirabbit IgG gold conjugate and transmission electron microscopy were successfully used to locate nisin Z on producing cells and to observe its bactericidal effects against sensitive cells.  相似文献   

18.
19.
Nisin is a cationic antimicrobial peptide that belongs to the group of lantibiotics. It is thought to form oligomeric pores in the target membrane by a mechanism that requires the transmembrane electrical potential delta psi and that involves local pertubation of the lipid bilayer structure. Here we show that nisin does not form exclusively voltage-dependent pores: even in the absence of a delta psi, nisin is able to dissipate the transmembrane pH gradient (delta pH) in sensitive Lactococcus lactis cells and proteoliposomes. The rate of dissipation increases with the magnitude of the delta pH. Nisin forms pores only when the delta pH is inside alkaline. The efficiency of delta psi-induced pore formation is strongly affected by the external pH, whereas delta pH-induced pore formation is rather insensitive to the external pH. Nisin(1-12), an amino-terminal fragment of nisin, and (des-deltaAla5)-(nisin(1-32) amide have a strongly reduced capacity to dissipate the delta psi and delta pH in cytochrome c oxidase proteoliposomes and L. lactis cells. Both variants bind with reduced efficiency to liposomes containing negatively charged phospholipids, suggesting that both ring A and rings C to E play a role in membrane binding. Nisin(1-12) competes with nisin for membrane binding and antagonizes pore formation. These findings are consistent with the wedge model of nisin-induced pore formation.  相似文献   

20.
Raw cow's milk spiked with 10(6) cfu ml-1 of Mycobacterium paratuberculosis was subjected to heat treatments of 72, 75, 78, 80, 85 or 90 degrees C for 15 s, and 72 degrees C for 20 and 25 s, using laboratory pasteurizing units. Three bovine strains of Myco. paratuberculosis were studied (NCTC 8578, B2 and DVL 943). Each strain was subjected to all the heat treatments indicated on three separate occasions. Although each of the heat treatments achieved a substantial (5-6 log10) reduction in numbers of viable Myco. paratuberculosis, small numbers of the organism (4-16 cfu 10 ml-1) survived in a proportion of the milk samples at each of the higher temperatures investigated, right up to 90 degrees C for 15 s. A longer holding time of 25 s at 72 degrees C was found to be more effective at inactivating Myco. paratuberculosis. Only one of the three strains studied, B2, yielded small numbers of survivors after heating at 72 degrees C for 20 s, but it was completely inactivated by extending the holding time at 72 degrees C by a further 5 s to 25 s. It was concluded that a longer holding time is more likely to achieve the complete inactivation of Myco. paratuberculosis in milk than a higher pasteurization temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号