首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structure of a wild type of the human soluble chloride intracellular ion channel CLIC4 (wCLIC4) has been determined at a resolution of 2.2A. The structure shows a homotrimer in an asymmetric unit, which is first observed in CLICs. The assembly of the trimer takes a unique triple interaction mode between three monomers with a hydrogen-bond network and hydrophobic contacts. Through such complicated interactions, the homotrimer of wCLIC4 is firmly stabilized. The structure shows an oligomeric mode with a unique assembly mechanism by which the oligomerization of CLIC4 can be performed without any intramolecular disulfide bond formation. It indicated a possibility that CLIC4 may take a unique structural organization distinct from CLIC1 for docking with lipid bilayers. In addition, the structure shows distinct conformational states of the h2 region for respective monomers of the trimer, which reveal an intrinsic conformational susceptibility for this significant region in the structural transition.  相似文献   

2.
Oxidative stress, characterized by overproduction of reactive oxygen species (ROS), is a major feature of several pathological states. Indeed, many cancers and neurodegenerative diseases are accompanied by altered redox balance, which results from dysregulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In this review, we consider the role of the intracellular chloride channel 1 (CLIC1) in microglial cells during oxidative stress. Following microglial activation, CLIC1 translocates from the cytosol to the plasma membrane where it promotes a chloride conductance. The resultant anionic current balances the excess charge extruded by the active NADPH oxidase, supporting the generation of superoxide by the enzyme. In this scenario, CLIC1 could be considered to act as both a second messenger and an executor.  相似文献   

3.
Glutathione transferases are a family of enzymes that are traditionally known to contribute to the phase II class of detoxification reactions. However, a novel property of the Schistosoma japonicum glutathione transferase (Sj.GST26) involves its translocation from the external medium into a variety of different cell types. Here we explore the efficiency and mechanism of cell entry for this class of protein. Using flow cytometry and confocal microscopy, we have examined the internalisation of Sj.GST26 into live cells under a variety of conditions designed to shed light on the mode of cellular uptake. Our results show that Sj.GST26 can effectively enter cells through an energy-dependent event involving endocytosis. More specifically, Sj.GST26 was found to colocalise with transferrin within the cell indicating that the endocytosis process involves clathrin-coated pits. A comprehensive study into the cellular internalisation of proteins from other classes within the GST structural superfamily has also been conducted. These experiments suggest that the ‘GST-fold’ structural motif influences cellular uptake, which presents a novel glimpse into an unknown aspect of GST function.  相似文献   

4.
Hammer E  Heilbronn R  Weger S 《FEBS letters》2007,581(28):5418-5424
Human Topors has originally been identified as binding partner of p53 and DNA topoisomerase I (TOP1). It can function as both an ubiquitin and SUMO-1 E3 ligase for p53. Here we demonstrate that Topors enhances the formation of high-molecular weight SUMO-1 conjugates of TOP1 in a reconstituted in vitro system and also in human osteosarcoma cells, similar to treatment with CPT. In contrast to the situation observed with p53, overall sumoylation levels were rather unaffected. Experiments with TOP1 point mutants strongly suggest that the high-molecular weight conjugates represent SUMO-1 chains formed on a limited number of SUMO-1 acceptor sites.  相似文献   

5.
Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features.  相似文献   

6.
Phagocytosis is an important process for the removal of apoptotic cells or cellular debris. Eat-me signals control the initiation of phagocytosis and hold the key for in-depth understanding of its molecular mechanisms. However, because of difficulties to identify unknown eat-me signals, only a limited number of them have been identified and characterized. Using a newly developed functional cloning strategy of open reading frame (ORF) phage display, we identified nine putative eat-me signals, including tubby-like protein 1 (Tulp1). This further led to the elucidation of tubby as the second eat-me signal in the same protein family. Both proteins stimulated phagocytosis of retinal pigment epithelium (RPE) cells and macrophages. Tubby-conjugated fluorescent microbeads facilitated RPE phagocytosis. Tubby and Tulp1, but not other family members, enhanced the uptake of membrane vesicles by RPE cells in synergy. Retinal membrane vesicles of Tubby mice and Tulp1−/− mice showed reduced activities for RPE phagocytosis, which were compensated by purified tubby and Tulp1, respectively. These data reveal a novel activity of tubby and Tulp1, and demonstrate that unbiased identification of eat-me signals by the broadly applicable strategy of ORF phage display can provide detailed insights into phagocyte biology.  相似文献   

7.
Lee SM  Kim HS  Han HJ  Moon BC  Kim CY  Harper JF  Chung WS 《FEBS letters》2007,581(21):3943-3949
In plant cells, the vacuole functions as a major calcium store. Although a calmodulin-regulated Ca2+-ATPase (ACA4) is known to be present in prevacuolar compartments, the presence of an ACA-type Ca2+-ATPase in the mature vacuole of a plant cell has not been verified. Here we provide evidence that ACA11 localizes to the vacuole membrane. ACA11 tagged with GFP was expressed in stable transgenic plants, and visualized in root cells and protoplasts by confocal microscopy. A Ca2+-ATPase function for ACA11 was confirmed by complementation of yeast mutants. A calmodulin binding domain was identified within the first 37 residues of the N-terminal autoinhibitory region.  相似文献   

8.
Kim YH  Sung KS  Lee SJ  Kim YO  Choi CY  Kim Y 《FEBS letters》2005,579(27):6272-6278
The modification of homeodomain-interacting protein kinase 2 (HIPK2) by small ubiquitin-like modifier 1 (SUMO-1) plays an important role in its targeting into the promyelocytic leukemia body, as well as in its differential interaction with binding partner, but the desumoylation of HIPK2 by SUMO-specific proteases is largely unknown. In this study, we show that HIPK2 is a desumoylation target for the SUMO-specific protease SENP1 that shuttles between the cytoplasm and the nucleus. Mutation analyses reveal that SENP1 contains the nuclear export sequence (NES) within the extreme carboxyl-terminal region, and SENP1 is exported to the cytoplasm in a NES-dependent manner. Sumoylated HIPK2 are deconjugated by SENP1 both in vitro and in cultured cells, and the desumoylation is enhanced either by the forced translocation of SENP1 into the nucleus or by the SENP1 NES mutant. Concomitantly, desumoylation induces dissociation of HIPK2 from nuclear bodies. These results demonstrate that HIPK2 is a target for SENP1 desumoylation, and suggest that the desumoylation of HIPK2 may be regulated by the cytoplasmic-nuclear shuttling of SENP1.  相似文献   

9.
TRAF-interacting protein (TRIP) is a RING-dependent ubiquitin ligase   总被引:1,自引:0,他引:1  
TRAF-interacting protein (TRIP) was initially identified as a TRAF1- and TRAF2-binding partner that inhibited NF-kappaB activation without a known mechanism. Inspection of the TRIP sequence revealed an N-terminal RING domain, which is found in many E3 ubiquitin (Ub) ligases. We show that TRIP is a RING-dependent Ub ligase that undergoes auto-ubiquitination and requires an intact RING domain. Both TRIP and its RING mutant interact with TRAF1, 2, 3, 5, and 6, but failed to interact with CYLD and NIK. Stable expression of TRIP or a RING mutant did not affect IKK activation induced by TNF or IL-1 and had no affect on TNF-induced apoptosis. Similarly, RANKL-induced signaling and osteoclastogenesis were not affected by TRIP or its RING mutant. Interestingly, TRIP expression was down regulated during the late stages of osteoclastogenesis. Taken together, our results demonstrate that TRIP is a novel RING-dependent Ub ligase and a binding partner for TRAFs.  相似文献   

10.
Dass JF  Sudandiradoss C 《Gene》2012,505(2):211-220
Superoxide dismutases (SODs) are metalloenzymes that represent one important line of defense against reactive oxygen species (ROS). In this paper, two novel SOD genes, MdSOD1 and MdSOD2, which putatively encode 261 and 214 amino acid residues respectively were identified and characterized from the housefly Musca domestica. The high similarity of MdSOD1 and MdSOD2 with SODs from other organisms indicated that they should be two new members of the SOD family. qPCR exhibited a universal expression of MdSOD1 and MdSOD2 detected in various tissues of housefly larva, including the fat body, gut, hemocyte and epidermis. Expression profiling reveals that MdSOD1 and MdSOD2 can be induced significantly via not only heat shock and cadmium (Cd) stress but also Escherichia coli and Staphylococcus aureus challenge. The two genes were cloned into the prokaryotic expression vector pET-28a to obtain the fusion proteins rMdSOD1 and rMdSOD2. Between them, the activity of rMdSOD2 was found by visual assay methods. ESI-LC-MS/MS analysis showed that three peptide fragments of the protein rMdSOD2 were identical to the corresponding sequence of M. domestica MdSOD2. MdSOD1 and MdSOD2 in housefly larvae were abrogated by feeding bacteria expressing dsRNA. High mortalities were observed in the larvae treated with dsRNA of SODs at heat shock, Cd stress and bacterial invasion. This phenomenon indicated that MdSOD1 and MdSOD2 are related to the survival of M. domestica under stress. This may provide new insights into the role of the two SOD genes in protecting M. domestica against both stress and bacterial invasion.  相似文献   

11.
Epsin and AP180 are essential components of the endocytotic machinery, which controls internalization of protein receptors and other macromolecules at the cell surface. Epsin and AP180 are recruited to the plasma membrane by their structurally and functionally related N-terminal ENTH and ANTH domains that specifically recognize PtdIns(4,5)P2. Here, we show that membrane anchoring of the ENTH and ANTH domains is regulated by the acidic environment. Lowering the pH enhances PtdIns(4,5)P2 affinity of the ENTH and ANTH domains reinforcing their association with lipid vesicles and monolayers. The pH dependency is due to the conserved histidine residues of the ENTH and ANTH domains, protonation of which is necessary for the strong PtdIns(4,5)P2 recognition, as revealed by liposome binding, surface plasmon resonance, NMR, monolayer surface tension and mutagenesis experiments. The pH sensitivity of the ENTH and ANTH domains is reminiscent to the pH dependency of the FYVE domain suggesting a common regulatory mechanism of membrane anchoring by a subset of the PI-binding domains.  相似文献   

12.
The canonical Wnt pathway is recurrently used during embryogenesis and adult life. To track the cellular output of Wnt signaling in a living organism, we designed a hormone-inducible Wnt responsive system, capable to dynamically and specifically report Wnt pathway activities through eGFP expression. In contrast to previous in vivo reporters, our system essentially avoids interference of consecutive signals by remaining dormant until addition of hormone, which makes it a valuable tool to map canonical Wnt signaling in post-embryonic stages. Transgenic Xenopus laevis embryos were analyzed revealing at tadpole stage in specific tissues and organs cell populations with high Wnt pathway activity.  相似文献   

13.
Functional roles of putative helix 8 in the carboxy-terminal tail of the human histamine H3 receptor were investigated using deleted and alanine-substituted mutant receptors. While the deletion of the carboxy-terminal tail did not decrease the total expression level, surface expression, or ligand binding affinity, the agonist-stimulated cAMP response, [35S] GTPγS binding, and MAPK activation were totally abolished. The receptor lacking the carboxy-terminal tail also failed to respond to an inverse agonist, thioperamide, suggesting that the carboxy-terminal tail is involved in the regulation of receptor activity by changing G-protein coupling with the receptor. Site-directed mutagenesis revealed that hydrophobic amino acids in the putative helix 8 such as phenylalanines at position 419 (F7.60) and 423 (F7.64) or leucines at 426 (L7.67) and 427 (L7.68) were important for the agonist-induced activation of H3 receptor. Substitution of F7.60 also resulted in a receptor that was less responsive to inactivation by the inverse agonist, implying the existence of an intermediate conformation that can be either activated or inactivated. Our results suggest that hydrophobic interface of putative helix 8 is important for the regulation of H3 receptor activity, presumably by stabilizing the helix to the plasma membrane.  相似文献   

14.
Pteridine reductase 1 (PTR1) is an essential enzyme of pterin and folate metabolism in the protozoan parasite Leishmania. The present work is focused on the degradation of PTR1 during growth phase in Leishmania donovani. Western blot analysis with PTR1-GFP transfected promastigotes revealed that PTR1 protein was degraded in the stationary phase of growth at the time when the parasites were undergoing metacyclogenesis. Fluorescence microscopy revealed cytoplasmic localization of GFP tagged protein extending to the flagellum in these stationary phase promastigotes, implying that degradation of the protein was not by the usual multivesicular tubule lysosome (MVT) pathway. A probable destruction box of nine amino acids Q63ADLSNVAK71 and possible lysine residue K156 was identified in L. donovani PTR1 to be the site for ubiquitin conjugation. This suggests that PTR1 degradation during the stationary phase of growth is mediated by the proteasome. This leads to lower levels of H4-biopterin, which favors metacyclogenesis, and subsequently results in a highly infective stage of the parasite. Therefore, this finding has importance to identify new target molecule like the proteasome for therapeutic intervention.  相似文献   

15.
Calmyrin1 (CaMy1) is an EF-hand Ca2+-binding protein expressed in several cell types, including brain neurons. Using a yeast two-hybrid screen of a human fetal brain cDNA library, we identified SCG10 protein (stathmin2) as a CaMy1 partner. SCG10 is a microtubule-destabilizing factor involved in neuronal growth during brain development. We found increased mRNA and protein levels of CaMy1 during neuronal development, which paralleled the changes in SCG10 levels. In developing primary rat hippocampal neurons in culture, CaMy1 and SCG10 colocalized in cell soma, neurites, and growth cones. Pull-down, coimmunoprecipitation, and proximity ligation assays demonstrated that the interaction between CaMy1 and SCG10 is direct and Ca2+-dependent in vivo and requires the C-terminal domain of CaMy1 (residues 99-192) and the N-terminal domain of SCG10 (residues 1-35). CaMy1 did not interact with stathmin1, a protein that is homologous with SCG10 but lacks the N-terminal domain characteristic of SCG10. CaMy1 interfered with SCG10 inhibitory activity in a microtubule polymerization assay. Moreover, CaMy1 overexpression inhibited SCG10-mediated neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. This CaMy1 activity did not occur when an N-terminally truncated SCG10 mutant unable to interact with CaMy1 was expressed. Altogether, these data suggest that CaMy1 via SCG10 couples Ca2+ signals with the dynamics of microtubules during neuronal outgrowth in the developing brain. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

16.
17.
18.
The antioxidant enzyme glutathione peroxidase 4 (GPx4) is capable of reducing complex lipid hydroperoxides in addition to hydrogen peroxide and organic hydroperoxides. Mammals express three GPx4 isoforms that are targeted to nucleoli, mitochondria or cytosol via variable amino termini. To better understand the role of this important antioxidant enzyme in marine finfish, we determined the subcellular localisation of a GPx4 homologue from southern bluefin tuna (Thunnus maccoyii; SBT). We created constructs for the expression of the selenocysteine-to-cysteine mutant of SBT GPx4 (GPx4C) tagged with enhanced green fluorescent protein (EGFP), including or lacking a putative amino-terminal signal peptide, and expressed the fusion proteins in a fish cell line. Fluorescence microscopy revealed that the full-length GPx4C-EGFP fusion protein localised to the trans-Golgi, suggesting that tuna GPx4 may be directed to the secretory pathway. Anti-GFP immunoblotting of cell lysates and proteins from culture media showed that the secretion of SBT GPx4 into the culture medium required an amino-terminal signal peptide. According to available sequence data, the SBT GPx4 isoform studied here is representative of other piscine GPx4 isoforms, suggesting that the secretion of at least one GPx4 isoform may be common amongst teleost fish.  相似文献   

19.
Harpreet Singh 《FEBS letters》2010,584(10):2112-10897
Plasma membrane channels have been extensively studied, and their physiological roles are well established. In contrast, relatively little information is available about intracellular ion channels. Chloride Intracellular Channel (CLICs) proteins are a novel class of putative intracellular ion channels. They are widely expressed in different intracellular compartments, and possess distinct properties such as the presence of a single transmembrane domain, and a dimorphic existence as either a soluble or membranous form. How these soluble proteins unfold, target to, and auto-insert into the intracellular membranes to form functional integral ion channels is a complex biological question. Recent information from studies of their crystal structures, biophysical characterization and functional roles has provoked interest in these unusual channels.  相似文献   

20.
Structural changes in different parts of the brain in rheumatoid arthritis (RA) patients have been reported. RA is not regarded as a brain disease. Body organs such as spleen and lung produce RA-relevant genes. We hypothesized that the structural changes in the brain are caused by changes of gene expression in body organs. Changes in different parts of the brain may be affected by altered gene expressions in different body organs. This study explored whether an association between gene expressions of an organ or a body part varies in different brain structures. By examining the association of the 10 most altered genes from a mouse model of spontaneous arthritis in a normal mouse population, we found two groups of gene expression patterns between five brain structures and spleen. The correlation patterns between the prefrontal cortex, nucleus accumbens, and spleen were similar, while the associations between the other three parts of the brain and spleen showed a different pattern. Among overall patterns of the associations between body organs and brain structures, spleen and lung had a similar pattern, and patterns for kidney and liver were similar. Analysis of the five additional known arthritis-relevant genes produced similar results. Analysis of 10 nonrelevant-arthritis genes did not result in a strong association of gene expression or clearly segregated patterns. Our data suggest that abnormal gene expressions in different diseased body organs may influence structural changes in different brain parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号