首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously published that bilateral adrenalectomy in the rat reduces the Ca2+-mediated alpha-adrenergic activation of hepatic glycogenolysis, while it increases the cellular calcium content of hepatocytes. In the experiments presented here, the concentration of cytosolic free calcium (Ca2+i) at rest and in response to epinephrine was measured in aequorin-loaded hepatocytes isolated from sham and adrenalectomized male rats. We found that in adrenalectomized rats the resting Ca2+i was elevated, the rise in Ca2+i evoked by epinephrine was reduced, and the rise in 45Ca efflux that follows such stimulation was depressed. Furthermore, the slope of the relationship between Ca2+i and calcium efflux was decreased 60% in adrenalectomized. Adrenalectomy did not change Ca2+ release from intracellular calcium pools in response to IP3 in saponin-permeabilized hepatocytes. The EC50 for inositol 1,4,5-triphosphate and the maximal Ca2+ released were similar in both sham and adrenalectomized animals. Finally, the liver calmodulin content determined by radioimmunoassay was not significantly different between sham and adrenalectomized rats. These results suggest that 1) adrenalectomy reduces calcium efflux from the hepatocyte, probably by an effect on the plasma membrane (Ca2+-Mg2+)-ATPase-dependent Ca2+ pump and thus alters cellular calcium homeostasis; 2) adrenalectomy decreases the rise in Ca2+i in response to epinephrine; 3) this decreased rise in Ca2+i is not due to defects in the intracellular Ca2+ storage and mobilization processes; and 4) the effects of adrenalectomy on cellular calcium metabolism and on alpha-adrenergic activation of glycogenolysis are not caused by a reduction in soluble calmodulin.  相似文献   

2.
The effects of adrenalectomy on cell calcium metabolism and on the effects of epinephrine on cAMP, phosphorylase a activity, and calcium efflux were studied in hepatocytes isolated from adult male and female rats. Adrenalectomy increased the total calcium of hepatocytes, all exchangeable calcium pools, and all calcium fluxes between the cellular pools in both sexes. After adrenalectomy, basal cAMP was elevated, phosphorylase a + b was decreased, but basal phosphorylase a activity was not changed. In adrenalectomized males and at all concentrations of epinephrine studied (1·10?8?1·10?5M) stimulation of calcium efflux was decreased and cAMP accumulation was enhanced, while the resulting phosphorylase a activation was depressed. In hepatocytes from adrenalectomized females there was a similar increase in cAMP accumulation induced by epinephrine, and a decrease in the stimulation of calcium efflux; however, the depression in phosphorylase a activation was much less and was significant only at 1·10?8 and 1·10?5M epinephrine. In the male, while activation of phosphorylase a shifted from a pure α-adrenergic response mediated by calcium to one also involving a cAMP-mediated β-adrenergic response, the contribution of the attenuated calcium signal was still significant. Hepatocytes from female rats did not show a comparable α- to β-shift, since the relative contribution of calcium and cAMP to phosphorylase activation was similar in sham-operated and adrenalectomized animals.  相似文献   

3.
At maximally effective concentrations, vasopressin (10(-7) M) increased myo-inositol trisphosphate (IP3) in isolated rat hepatocytes by 100% at 3 s and 150% at 6 s, while adrenaline (epinephrine) (10(-5) M) produced a 17% increase at 3 s and a 30% increase at 6 s. These increases were maintained for at least 10 min. Both agents increased cytosolic free Ca2+ [( Ca2+]i) maximally by 5 s. Increases in IP3 were also observed with angiotensin II and ATP, but not with glucagon or platelet-activating factor. The dose-responses of vasopressin and adrenaline on phosphorylase and [Ca2+]i showed a close correspondence, whereas IP3 accumulation was 20-30-fold less sensitive. However, significant (20%) increases in IP3 could be observed with 10(-9) M-vasopressin and 10(-7) M-adrenaline, which induce near-maximal phosphorylase activation. Vasopressin-induced accumulation of IP3 was potentiated by 10mM-Li+, after a lag of approx. 1 min. However the rise in [Ca2+]i and phosphorylase activation were not potentiated at any time examined. Similar data were obtained with adrenaline as agonist. Lowering the extracellular Ca2+ to 30 microM or 250 microM did not affect the initial rise in [Ca2+]i with vasopressin but resulted in a rapid decline in [Ca2+]i. Brief chelation of extracellular Ca2+ for times up to 4 min also did not impair the rate or magnitude of the increase in [Ca2+]i or phosphorylase a induced by vasopressin. The following conclusions are drawn from these studies. IP3 is increased in rat hepatocytes by vasopressin, adrenaline, angiotensin II and ATP. The temporal relationships of its accumulation to the increases in [Ca2+]i and phosphorylase a are consistent with it playing a second message role. Influx of extracellular Ca2+ is not required for the initial rise in [Ca2+]i induced by these agonists, but is required for the maintenance of the elevated [Ca2+]i.  相似文献   

4.
alpha-Adrenergic stimulation of hepatocytes prevented, in a dose-dependent manner, the stimulation of [U-14C]lactate conversion to [14C]glucose by glucagon and exogenously added cAMP and Bt2cAMP. The inhibition was referable to an interaction with adrenergic receptors which resulted in a small decrease in hepatic cAMP levels. Low concentrations of epinephrine (10 nM) were able to inhibit phosphorylase activation and glucose output elicited by low doses of glucagon (5 X 10(-11) M to 2 X 10(-10) M). The ability of epinephrine (acting via alpha 1-adrenergic receptors), vasopressin, and angiotensin II to elicit calcium efflux was inhibited by glucagon, suggesting that intracellular redistributions of Ca2+ are importantly involved in the gluconeogenic process. It is proposed that vasopressin, angiotensin II, and catecholamines, acting primarily via alpha 1-adrenergic receptors, are responsible for inhibition of glucagon mediated stimulation of gluconeogenesis by altering subcellular calcium redistribution and decreasing cAMP levels.  相似文献   

5.
Ca2(+)-mobilizing hormones stimulate Ca2+ efflux from hepatocytes   总被引:2,自引:0,他引:2  
Treatment of hepatocytes with 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ), a novel mobilizer of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool, produces a sustained elevation of [Ca2+]i (Kass, G. E. N., Duddy, S. K., and Orrenius, S. (1989) J. Biol. Chem. 264, 15192-15198). Exposure of hepatocytes to the Ca2(+)-mobilizing hormones, vasopressin, angiotensin II, or ATP following [Ca2+]i elevation by tBuBHQ produced a rapid return of [Ca2+]i to basal or near basal levels. Release of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool by tBuBHQ following pretreatment with vasopressin or angiotensin II resulted in a [Ca2+]i transient and not the sustained [Ca2+]i elevation observed in the absence of the Ca2(+)-mobilizing hormones. The G-protein activator, NaF plus AlCl3, mimicked both effects of the Ca2(+)-mobilizing hormones on [Ca2+]i. The mechanism for Ca2+ removal from the cytosol by Ca2(+)-mobilizing hormones did not involve cyclic nucleotides nor did it require protein kinase C activation or cyclo- and lipoxygenase-dependent metabolites of arachidonic acid. Furthermore, the hormone-mediated decrease in [Ca2+]i did not involve the pertussis toxin-sensitive Gi-protein. Removal of the tBuBHQ-mobilized Ca2+ from the cytosol of hepatocytes by Ca2(+)-mobilizing hormones was mediated by stimulation of a Ca2+ efflux pathway. Thus, in addition to initiating [Ca2+]i transients by releasing Ca2+ from the inositol 1,4,5-trisphosphate-sensitive Ca2+ store and stimulating Ca2+ influx, Ca2(+)-mobilizing hormones also regulate the termination of the [Ca2+]i transient by stimulating a Ca2+ efflux pathway.  相似文献   

6.
Activation of protein kinase C blocks the alpha 1-adrenergic action in hepatocytes. Preincubation of hepatocytes (in buffer with or without calcium) with vasopressin, angiotensin II, phorbol myristate acetate (PMA) or epinephrine + propranolol markedly diminished the alpha 1-adrenergic responsiveness of the cells (stimulation of ureagenesis) assayed in buffer without calcium. On the contrary, when the alpha 1-adrenergic responsiveness was assayed in buffer containing calcium no effect of the preincubation with vasopressin, angiotensin II or PMA was observed. Preincubation with epinephrine diminished the alpha 1-adrenergic responsiveness of the cells. In hepatocytes from hypothyroid rats the preincubation with the activators of protein kinase C (vasopressin, angiotensin II, phorbol 12-myristate 13-acetate and epinephrine) reduced markedly the alpha 1-adrenergic responsiveness of the cells, whereas in identical experiments using cells from adrenalectomized rats only the preincubation with epinephrine diminished the responsiveness. It is concluded that activation of protein kinase C induces desensitization of the alpha 1-adrenergic action in hepatocytes and that the calcium-independent pathway of the alpha 1-adrenergic action (predominant in cells from hypothyroid animals) resensitizes more slowly than the calcium-dependent pathway (predominant in cells from adrenalectomized rats). Epinephrine in addition to inducing this type of desensitization (through protein kinase C) leads to a further refractoriness of the cells towards alpha 1-adrenergic agonists.  相似文献   

7.
The effects of submaximal doses of AlF4- to mobilize hepatocyte Ca2+ were potentiated by glucagon (0.1-1 nM) and 8-p-chlorophenylthio-cAMP. A similar potentiation by glucagon of submaximal doses of vasopressin, angiotensin II, and alpha 1-adrenergic agonists has been previously shown (Morgan, N. G., Charest, R., Blackmore, P. F., and Exton, J. H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4208-4212). When hepatocytes were pretreated with the protein kinase C activator 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), the effects of AlF4- to mobilize Ca2+, increase myo-inositol 1,4,5-trisphosphate (IP3), and activate phosphorylase were attenuated. Treatment of hepatocytes with PMA likewise inhibits the ability of vasopressin, angiotensin II, and alpha 1-adrenergic agonists to increase IP3 and mobilize Ca2+ (Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F. (1985) J. Biol. Chem. 260, 2844-2851). In contrast, the ability of AlF4- or angiotensin II to lower cAMP or inhibit glucagon-mediated increases in cAMP was unaffected by PMA. The ability of AlF4- to lower cAMP was attenuated in hepatocytes from animals treated with islet-activating protein, whereas Ca2+ mobilization was not modified. These results suggest that the lowering of cAMP induced by AlF4- and angiotensin II was mediated by the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase, whereas Ca2+ mobilization was not. Addition of glucagon, forskolin, or 8CPT-cAMP to hepatocytes raised IP3 and mobilized Ca2+. Both effects were blocked by PMA pretreatment, whereas cAMP and phosphorylase a levels were only minimally affected by PMA. The mobilization of Ca2+ induced by cAMP in hepatocytes incubated in low Ca2+ media was not additive with that induced by maximally effective doses of vasopressin, angiotensin II, or alpha 1-adrenergic agonists, indicating that the Ca2+ pool(s) affected by agents which increase cAMP is the same as that affected by Ca2+-mobilizing hormones which do not increase cAMP. These findings support the proposal that AlF4- mimics the effects of the Ca2+-mobilizing hormones in hepatocytes by activating a guanine nucleotide-binding regulatory protein (Np) which couples the hormone receptors to a phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphodiesterase. They also suggest that Np, PIP2 phosphodiesterase, or a factor involved in their interaction is activated following phosphorylation by cAMP-dependent protein kinase and inhibited after phosphorylation by protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.  相似文献   

9.
2,5-Di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ), a potent inhibitor of liver microsomal ATP-dependent Ca2+ sequestration (Moore, G. A., McConkey, D. J., Kass, G. E. N., O'Brien, P. J., and Orrenius, S. (1987) FEBS Lett. 224, 331-336), produced a concentration-dependent, rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) in isolated rat hepatocytes (EC50 = 1-2 microM). The amplitude of the [Ca2+]i increase was essentially identical with that produced by vasopressin, but the tBuBHQ-stimulated [Ca2+]i increase remained sustained for 15-20 min. Vasopressin added 2-3 min after tBuBHQ caused [Ca2+]i to rapidly return to basal levels; however, tBuBHQ added after vasopressin resulted in a Ca2+ transient rather than a sustained [Ca2+]i elevation. Ca2+ influx was not stimulated in tBuBHQ-treated hepatocytes, but was markedly enhanced upon addition of vasopressin. Depletion of the endoplasmic reticular Ca2+ pool by the addition of vasopressin to hepatocytes incubated in low Ca2+ medium virtually abolished the tBuBHQ-mediated [Ca2+]i rise and vice versa. In saponin-permeabilized hepatocytes, tBuBHQ released Ca2+ from the same nonmitochondrial, ATP-dependent Ca2+ pool which was released by inositol 1,4,5-trisphosphate. Furthermore, tBuBHQ-induced Ca2+ release in saponin-permeabilized cells was not inhibited by neomycin, and tBuBHQ did not produce any apparent accumulation of inositol phosphates in intact hepatocytes. The rate of passive efflux of Ca2+ from Ca2+-loaded hepatic microsomes was unaltered by tBuBHQ. Thus, tBuBHQ inhibits ATP-dependent Ca2+ sequestration via a direct effect on the endoplasmic reticulum Ca2+ pump, resulting in net Ca2+ release and elevation of [Ca2+]i. Taken together, our results show that in the absence of hormonal stimuli, excess Ca2+ is only slowly cleared from the hepatocyte cytosol, indicating that the basal rate of Ca2+ removal by the plasma membrane Ca2+ pump and mitochondria is slow. Furthermore, Ca2+-mobilizing hormones appear to stimulate an active process of Ca2+ removal from hepatocyte cytosol which does not depend on re-uptake into the endoplasmic reticulum.  相似文献   

10.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier.  相似文献   

11.
Loading isolated rat hepatocytes with high concentrations of the fluorescent Ca2+-chelator quin-2 in the absence of extracellular Ca2+ decreases by about 3-fold the cytosolic Ca2+ concentration ([Ca2+]i). In these low [Ca2+]i cells, the initial 45Ca2+ uptake rate, assumed to represent the Ca2+ influx, is stimulated to a level close to that promoted by maximal doses of vasopressin and angiotensin II in control cells. The subsequent addition of Ca2+ to the quin-2-loaded hepatocytes results in a rapid increase in [Ca2+]i and a return of Ca2+ influx towards the basal level usually observed in nonloaded cells. This indicates that the Ca2+ influx is dependent on [Ca2+]i but not on the quin-2 load itself. In the low [Ca2+]i cells, both the apparent Km and the apparent Vmax of the Ca2+ influx are increased as compared to the controls, indicating that the properties of the channels activated by lowering [Ca2+]i are apparently identical to those initiated by the hormones (Mauger, J.-P., Poggioli, J., Guesdon, F., and Claret, M. (1984) Biochem. J. 221, 121-127). It is proposed that in the isolated rat hepatocytes there is an inverse relationship between the Ca2+ influx and [Ca2+]i. Under resting conditions, [Ca2+]i might be high enough to partially inhibit the Ca2+ influx via a Ca2+ binding to an inhibitory site presumably located at the inner membrane surface. The role of the site in the hormonal action is discussed.  相似文献   

12.
The effects of glucagon and vasopressin, singly or together, on cytosolic free Ca2+ concentration [( Ca2+]i) and on the 45Ca2+ efflux were studied in isolated rat liver cells. In the presence of 1 mM external Ca2+, glucagon and vasopressin added singly induced sustained increases in [Ca2+]i. The rate of the initial fast phase of the [Ca2+]i increase and the magnitude of the final plateau were dependent on the concentrations (50 pm-0.1 microM) of glucagon and vasopressin. Preincubating the cells with a low concentration of glucagon (0.1 nM) for 2 min markedly accelerated the fast phase and elevated the plateau of the [Ca2+]i increase caused by vasopressin. In the absence of external free Ca2+, glucagon and vasopressin transiently increased [Ca2+]i and stimulated the 45Ca2+ efflux from the cells, indicating mobilization of Ca2+ from internal store(s). Preincubating the cells with 0.1 nM-glucagon accelerated the rate of the fast phase of the [Ca2+]i rise caused by the subsequent addition of vasopressin. However, unlike what was observed in the presence of 1 mM-Ca2+, glucagon no longer enhanced the maximal [Ca2+]i response to vasopressin. In the absence of external free Ca2+, higher concentrations (1 nM-0.1 microM) of glucagon, which initiated larger increases in [Ca2+]i, drastically decreased the subsequent Ca2+ response to vasopressin (10 nM). At these concentrations, glucagon also decreased the vasopressin-stimulated 45Ca2+ efflux from the cells. It is suggested that, in the liver, glucagon accelerates the fast phase and elevates the plateau of the vasopressin-mediated [Ca2+]i increase respectively by releasing Ca2+ from the same internal store as that permeabilized by vasopressin, probably the endoplasmic reticulum, and potentiating the influx of extracellular Ca2+ caused by this hormone.  相似文献   

13.
The intrasynaptosomal free calcium concentration ([Ca2+]i) was measured in quin2-loaded synaptosomes prepared from rat cerebral cortex. Membrane-permeant cyclic adenosine-3',5'-monophosphate (cAMP) analogues [8-bromo-cyclic adenosine-3',5'-monophosphate (8-Br-cAMP) and dibutyryl-cyclic adenosine-3',5'-monophosphate (db-cAMP)] increased [Ca2+]i in a dose-dependent manner; The maximal increases were approximately 50% for 8-Br-cAMP and 35% for db-cAMP and occurred at approximately 10 microM with both analogues. Clonidine (1 microM) alone reduced [Ca2+]i by 26.5%; db-cAMP and 8-Br-cAMP attenuated this reduction to 14.2 and 8.2%, respectively. In contrast, the reduction (19.9%) in [Ca2+]i induced by the preferential kappa-opiate agonist dynorphin A(1-13) was not attenuated by the cAMP analogues; in fact, db-cAMP and 8-Br-cAMP potentiated the effect of dynorphin A(1-13) (1 microM), producing decreases in [Ca2+]i of 33.6 and 29.6%, respectively. We conclude that although alpha 2-adrenergic and kappa-opiate receptors both reduce [Ca2+]i, the alpha 2-adrenoceptor-mediated response and the kappa-opiate receptor-mediated response involve different effector mechanisms. It appears that presynaptic alpha 2-adrenoceptor agonist effects are linked to reductions in adenylate cyclase activity and cAMP production and a resultant increase in Ca2+ sequestration, Ca2+-channel blockade, or both. On the other hand, the kappa-opiate-mediated effects possibly involve an increase in cAMP production and a blockade of Ca2+ entry.  相似文献   

14.
Peptides containing Arg-Gly-Asp (RGD) immobilized on beads bind to integrins and trigger biphasic, transient increases in intracellular free Ca2+ ([Ca2+]i) in Madin-Darby canine kidney epithelial cells. The [Ca2+]i increase participates in feedback regulation of integrin-mediated adhesion in these cells. We examined influx pathways and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ store release as possible sources of the [Ca2+]i rise. The RGD-induced [Ca2+]i response requires external Ca2+ (threshold approximately 150 microM), and its magnitude is proportional to extracellular calcium. RGD-induced transients were attenuated by Ca2+ channel inhibitors (Ni2+ and carboxy-amidotriazole) or by plasma membrane depolarization, indicating that Ca2+ influx contributes to the response. Loading cells with heparin reduced the size of RGD-induced [Ca2+]i transients, indicating that IP3-mediated release of Ca2+ from stores may also contribute to the RGD response. Depletion of Ca2+ stores with thapsigargin activated Ni(2+)-sensitive Ca2+ influx that might also be expected to occur after IP3-mediated depletion of stored Ca2-. However, RGD elicited a Ni(2+)-sensitive Ca2+ influx even after pretreatment with thapsigargin, indicating that Ca2+ influx is controlled by a mechanism independent of IP3-mediated store depletion. We conclude that RGD-induced [Ca2+]i transients in Madin-Darby canine kidney cells result primarily from the combination of two distinct mechanisms: 1) IP3-mediated release of intracellular stores, and 2) activation of a Ca2+ influx pathway regulated independently of IP3 and Ca2+ store release. Because Ni2+ and carboxy-amidotriazole inhibited adhesion, whereas store depletion with thapsigargin had little effect, we suggest that the Ca2+ influx mechanism is most important for feedback regulation of integrin-mediated adhesion by increased [Ca2+]i.  相似文献   

15.
Establishment of salivary cell lines retaining normal morphological and physiological characteristics is important in the investigation of salivary cell function. A submandibular gland cell line, SMG-C6, has recently been established. In the present study, we characterized the phosphoinositide (PI)-Ca2+ signaling system in this cell line. Inositol 1,4,5-trisphosphate(1,4,5-IP3) formation, as well as Ca2+ storage, release, and influx in response to muscarinic, alpha1-adrenergic, P2Y-nucleotide, and cytokine receptor agonists were determined. Ca2+ release from intracellular stores was strongly stimulated by acetylcholine (ACh) and ATP, but not by norepinephrine (NA), epidermal growth factor (EGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFalpha). Consistently, 1, 4,5-IP3 formation was dramatically stimulated by ACh and ATP. ACh-stimulated cytosolic free Ca2+ concentration [Ca2+]i increase was inhibited by ryanodine, suggesting that the Ca2+-induced Ca2+ release mechanism is involved in the ACh-elicited Ca2+ release process. Furthermore, ACh and ATP partially discharged the IP3-sensitive Ca2+ store, and a subsequent exposure to thapsigargin (TG) induced further [Ca2+]i increase. However, exposure to TG depleted the store and a subsequent stimulation with ACh or ATP did not induce further [Ca2+]i increase, suggesting that ACh and ATP discharge the same storage site sensitive to TG. As in freshly isolated submandibular acinar cells, exposure to ionomycin and monensin following ACh or TG induced further [Ca2+]i increase, suggesting that IP3-insensitive stores exist in SMG-C6 cells. Ca2+ influx was activated by ACh, ATP, or TG, and was significantly inhibited by La3+, suggesting the involvement of store-operated Ca2+ entry (SOCE) pathway. These results indicate that in SMG-C6 cells: (i) Ca2+ release is triggered by muscarinic and P2Y-nucleotide receptor agonists through formation of IP3; (ii) both the IP3-sensitive and -insensitive Ca2+ stores are present; and (iii) Ca2+ influx is mediated by the store-operated Ca2+ entry pathway. We conclude that Ca2+ regulation in SMG-C6 cells is similar to that in freshly isolated SMG acinar cells; therefore, this cell line represents an excellent SMG cell model in terms of intracellular Ca2+ signaling.  相似文献   

16.
Regulation of cellular Ca2+ movements by alpha 1-adrenergic receptors has been studied using 45Ca2+ flux techniques in monolayer cultures of intact BC3H-1 cells. Unidirectional 45Ca2+ efflux from BC3H-1 cells reveals multiphasic kinetics, with a major fraction of cellular Ca2+ residing in a slowly exchanging intracellular compartment. Stimulation of alpha 1-adrenergic receptors by the agonist phenylephrine substantially increases 45Ca2+ unidirectional efflux, accompanied by a far smaller increase in 45Ca2+ influx. The selective enhancement of 45Ca2+ unidirectional efflux upon alpha 1-adrenergic receptor activation results in a net 30-40% decline in total cell Ca2+ content, measured either by radioisotopic equilibrium techniques or by atomic absorption spectroscopy. The relatively large pool of Ca2+ responsive to alpha-adrenergic stimulation is not displaced by La3+ but can be depleted with the Ca2+ ionophore A-23187. These results indicate that alpha 1-adrenergic receptor activation predominantly mobilizes Ca2+ from intracellular stores, together with a much smaller increase in transmembrane Ca2+ permeability. This interpretation is supported by comparative 45Ca2+ flux studies using a sister clone of BC3H-1 cells possessing surface nicotinic acetylcholine receptors but no alpha 1-adrenergic receptors. Agonist stimulation of the cholinergic receptor opens a well characterized transmembrane ion permeability gate. Cholinergic receptor activation greatly enhances the observed 45Ca2+ unidirectional influx relative to efflux, leading to net elevation of cellular Ca2+ content as Ca2+ moves down its inwardly directed concentration gradient.  相似文献   

17.
Characterization of responses of isolated rat hepatocytes to ATP and ADP   总被引:35,自引:0,他引:35  
In isolated rat hepatocytes, ATP and ADP (10(-6) M) rapidly mobilize intracellular Ca2+ and increase the concentration of free cytosolic Ca2+ ([Ca2+]i) within 1-2 s. The increase in [Ca2+]i is maximal (2.5- to 3-fold) by about 10 s and is dose-dependent, with ATP and ADP being half-maximally effective at 8 X 10(-7) and 3 X 10(-7) M, respectively. At submaximal concentrations, the rise in [Ca2+]i is transient due to hydrolysis of the agonist. The increase in [Ca2+]i in response to ATP or ADP can be potentiated by low concentrations of glucagon (10(-9) M). In addition, the [Ca2+]i rise can be antagonized in a time- and dose-dependent manner by the tumor promoter 4 beta-phorbol 12 beta-myristate 13 alpha-acetate. Adenosine, at concentrations as high as 10(-4) M, does not alter [Ca2+]i. AMP is ineffective at 10(-5) M, but at 10(-4) M it increases [Ca2+]i approximately 1.5-fold after a 30-s lag and at a slow rate. Conversely, high concentrations (10(-4) M) of adenosine and AMP increases cell cAMP about 2- to 3-fold. ATP and ADP, at concentrations (10(-6) M) which near-maximally increase [Ca2+]i, do not affect hepatocyte cAMP. ATP and ADP increase the cellular level of myoinositol 1,4,5-trisphosphate (IP3), the putative second messenger for Ca2+ mobilization. The increase in IP3 is dose-dependent and precedes or is coincident with the [Ca2+]i rise. There is an approximate 20% increase in IP3 with concentrations of ATP or ADP which near-maximally induce other physiological responses. It is concluded that submicromolar concentrations of ATP and ADP mobilize intracellular Ca2+ and activate phosphorylase in hepatocytes due to generation of IP3. These effects may involve P2-purinergic receptors. In contrast adenosine and AMP interact with P1 (A2)-purinergic receptors to increase cAMP.  相似文献   

18.
Hepatocytes from juvenile male rats (80-110 g) showed a 12-fold elevation of cAMP in response to epinephrine, which was mediated by beta 2-adrenergic receptors. In these cells, either alpha 1- or beta 2-adrenergic stimulation alone activated phosphorylase and glucose release although the alpha 1-phosphorylase response was 10-fold more sensitive to epinephrine and resulted in more rapid (by 10-20 s) activation of the enzyme. This suggests that the beta 2-adrenergic response is functionally unimportant for glycogenolysis, even in juvenile rats. beta 2-Adrenergic stimulation did, however, produce an increase in the rate of gluconeogenesis from [U-14C] lactate in these cells. Aging in the male rat was associated with attenuation of the beta 2-adrenergic cAMP response coupled with the emergence of an alpha 1-receptor-mediated accumulation of cAMP. The order of potency displayed by the alpha 1-adrenergic/cAMP system to adrenergic agonists and antagonists was identical with that of the alpha 1-adrenergic/Ca2+ system. These data suggest that, in maturity, hepatic alpha 1-receptors become linked to 2 separate transduction mechanisms, namely Ca2+ mobilization and cAMP generation. Calcium depletion of hepatocytes from adult, but not juvenile, male rats increased the alpha 1-component of the cAMP response to epinephrine, but under these conditions, alpha 1-activation of phosphorylase occurred more slowly than in calcium-replete cells. Blockade of alpha 2-adrenergic receptors did not significantly modify catecholamine effects on hepatocyte cAMP or phosphorylase a levels in male rats at any age studied, suggesting a lack of functional significance for these receptors in the regulation of glycogenolysis.  相似文献   

19.
The regulation of Ca2+ transport by intracellular compartments was studied in digitonin-permeabilized human neutrophils, using a Ca2+-selective electrode. When incubated in a medium containing ATP and respiratory substrates, the cells lowered within 6 min the ambient [Ca2+] to a steady state of around 0.2 microM. A vesicular ATP-dependent and vanadate-sensitive non-mitochondrial pool maintained this low [Ca2+] level. In the absence of ATP, a higher Ca2+ steady state of 0.6 microM was seen, exhibiting the characteristics of a mitochondrial Ca2+ "set point." Both pools were shown to act in concert to restore the previous ambient [Ca2+] following its elevation. Thus, the mitochondria participate with the other pool(s) in decreasing [Ca2+] to the submicromolar range whereas only the nonmitochondrial pool(s) lowers [Ca2+] to the basal level. The action of inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a few cell types was studied. IP3 released (detectable within 2 s) Ca2+ accumulated in the ATP-dependent pool(s) but had no effect on the mitochondria. The response was transient and resulted in desensitization toward subsequent IP3 additions. Under experimental conditions in which the ATP-dependent Ca2+ influx was blocked, the addition of IP3 resulted in a very large Ca2+ release from nonmitochondrial pool. The results strongly suggest that IP3 is a second messenger mediating intracellular Ca2+ mobilization in human neutrophils. Furthermore, the nonmitochondrial pool appears to have independent influx and efflux pathways for Ca2+ transport, a Ca2+ ATPase (the influx component) and an IP3-sensitive efflux component activated during Ca2+ mobilization.  相似文献   

20.
Micromolar concentrations of extracellular beta-NAD+ (NAD(e)+) activate human granulocytes (superoxide and NO generation and chemotaxis) by triggering: (i) overproduction of cAMP, (ii) activation of protein kinase A, (iii) stimulation of ADP-ribosyl cyclase and overproduction of cyclic ADP-ribose (cADPR), a universal Ca2+ mobilizer, and (iv) influx of extracellular Ca2+. Here we demonstrate that exposure of granulocytes to millimolar rather than to micromolar NAD(e)+ generates both inositol 1,4,5-trisphosphate (IP3) and cAMP, with a two-step elevation of intracellular calcium levels ([Ca2+]i): a rapid, IP3-mediated Ca2+ release, followed by a sustained influx of extracellular Ca2+ mediated by cADPR. Suramin, an inhibitor of P2Y receptors, abrogated NAD(e)+-induced intracellular increases of IP3, cAMP, cADPR, and [Ca2+]i, suggesting a role for a P2Y receptor coupled to both phospholipase C and adenylyl cyclase. The P2Y(11) receptor is the only known member of the P2Y receptor subfamily coupled to both phospholipase C and adenylyl cyclase. Therefore, we performed experiments on hP2Y(11)-transfected 1321N1 astrocytoma cells: micromolar NAD(e)+ promoted a two-step elevation of the [Ca2+]i due to the enhanced intracellular production of IP3, cAMP, and cADPR in 1321N1-hP2Y(11) but not in untransfected 1321N1 cells. In human granulocytes NF157, a selective and potent inhibitor of P2Y(11), and the down-regulation of P2Y(11) expression by short interference RNA prevented NAD(e)+-induced intracellular increases of [Ca2+]i and chemotaxis. These results demonstrate that beta-NAD(e)+ is an agonist of the P2Y(11) purinoceptor and that P2Y(11) is the endogenous receptor in granulocytes mediating the sustained [Ca2+]i increase responsible for their functional activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号