首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational changes in the beta-subunit of the bovine brain Ca2+-binding protein S100b (S100-beta) accompanying Ca2+ binding were investigated by analysis of the spectroscopic properties of the single tyrosine residue (Tyr17 beta) and flow-dialysis binding experiments. S100-beta binds Ca2+ sequentially at two sites to change the conformation of the protein. The first Ca2+ ion binds to site II beta, a typical Ca2+-binding site in the C-terminal region, and it does not significantly perturb the proximal environment of Tyr17 beta. After the first site is occupied, another Ca2+ ion binds to the N-terminal Ca2+-binding site, I beta, and strengthens a hydrogen bond between Tyr17 beta and a neighbouring carboxylate acceptor group, which results in a large increase in the Tyr17 beta fluorescence spectrum half-width and a positive absorption and c.d. signal between 290 and 275 nm. Ca2+ binding to the S100b.Zn2+6 complex, studied by flow-dialysis and fluorescence measurements showed that, although Zn2+ ions increase the affinity of S100b protein for Ca2+, the Ca2+-binding sequence was not changed. Tb3+ (terbium ion) binding studies on the S100b.Zn2+6 complex proved that Tb3+ antagonizes only Ca2+ binding site II beta and confirmed the sequential occupation of Ca2+-binding sites on the S100b.Zn2+6 complex.  相似文献   

2.
A series of chemically-defined adenosine phosphate ligands attached to Sepharose 4B were used as active-site probes in studying the interaction of enzymes with their coenzymes and substrates and to test the suitability of these matrices for `general ligand' affinity chromatography. Nicotinamide nucleotide-dependent dehydrogenases were used as models to test this methodology. Elution from these columns by NAD+ and/or AMP gradients (in the presence or the absence of substrates and/or nicotinamide mononucleotide) was consistent with: (1) the compulsory ordered addition of substrates to lactate and malate dehydrogenase; (2) the necessity for the NMN moiety of NAD+ to bind to these enzymes before the substrate; and illustrated: (3) that the binding of these two hydrogenases to these columns compared very well with the published three-dimensional models for these enzymes and (4) that separation of mixtures of dehydrogenases depended on the choice of matrix and displacing ion and whether any additions (e.g. substrates) were made to the gradients used. These techniques were used to purify UDP-glucose dehydrogenase from a crude starting material on a phosphate-linked UDP (or ADP) matrix. The binding of this enzyme to these two columns was not consistent with either an ordered or random addition of substrates and suggested a more complex mechanism.  相似文献   

3.
ABSTRACT: BACKGROUND: In sparse-view CT imaging, strong streak artifacts may appear around bony structures and they often compromise the image readability. Compressed sensing (CS) or total variation (TV) minimization-based image reconstruction method has reduced the streak artifacts to a great extent, but, sparse-view CT imaging still suffers from residual streak artifacts. We introduce a new bone-induced streak artifact reduction method in the CS-based image reconstruction. METHODS: We firstly identify the high-intensity bony regions from the image reconstructed by the filtered backprojection (FBP) method, and we calculate the sinogram stemming from the bony regions only. Then, we subtract the calculated sinogram, which stands for the bony regions, from the measured sinogram before performing the CS-based image reconstruction. The image reconstructed from the subtracted sinogram will stand for the soft tissues with little streak artifacts on it. To restore the original image intensity in the bony regions, we add the bony region image, which has been identified from the FBP image, to the soft tissue image to form a combined image. Then, we perform the CS-based image reconstruction again on the measured sinogram using the combined image as the initial condition of the iteration. For experimental validation of the proposed method, we take images of a contrast phantom and a rat using a micro-CT and we evaluate the reconstructed images based on two figures of merit, relative mean square error and total variation caused by the streak artifacts. RESULTS: The images reconstructed by the proposed method have been found to have smaller streak artifacts than the ones reconstructed by the original CS-based method when visually inspected. The quantitative image evaluation studies have also shown that the proposed method outperforms the conventional CS-based method. CONCLUSIONS: The proposed method can effectively suppress streak artifacts stemming from bony structures in sparse-view CT imaging.  相似文献   

4.
Yerushalmi H  Schuldiner S 《Biochemistry》2000,39(48):14711-14719
Both prokaryotic and eukaryotic cells contain an array of membrane transport systems maintaining the cellular homeostasis. Some of them (primary pumps) derive energy from redox reactions, ATP hydrolysis, or light absorption, whereas others (ion-coupled transporters) utilize ion electrochemical gradients for active transport. Remarkable progress has been made in understanding the molecular mechanism of coupling in some of these systems. In many cases carboxylic residues are essential for either binding or coupling. Here we suggest a model for the molecular mechanism of coupling in EmrE, an Escherichia coli 12-kDa multidrug transporter. EmrE confers resistance to a variety of toxic cations by removing them from the cell interior in exchange for two protons. EmrE has only one membrane-embedded charged residue, Glu-14, which is conserved in more than 50 homologous proteins. We have used mutagenesis and chemical modification to show that Glu-14 is part of the substrate-binding site. Its role in proton binding and translocation was shown by a study of the effect of pH on ligand binding, uptake, efflux, and exchange reactions. The studies suggest that Glu-14 is an essential part of a binding site, which is common to substrates and protons. The occupancy of this site by H(+) and substrate is mutually exclusive and provides the basis of the simplest coupling for two fluxes.  相似文献   

5.
Flow dialysis has found widespread use in determining the dissociation constant (KD) of a protein-ligand interaction or the amount of available binding sites (E0). This method has the potency to measure both these parameters in a single experiment and in this article a method to measure simultaneously the KD and E0 is presented, together with an extensive error analysis of the method. The flow-dialysis technique is experimentally simple to perform. However, a number of practical aspects of this method can have a large impact on the outcome of KD and E0. We have investigated all sources of significant systematic and random errors, using the interaction between mannitol and its transporter from Escherichia coli as a model. Monte Carlo simulations were found to be an excellent tool to assess the impact of these errors on the binding parameters and to define the experimental conditions that allow their most accurate estimation.  相似文献   

6.
Abstract

Use of computerized analysis techniques for ligand binding data have recently become generally available, and are now used quite routinely. When used appropriately, these tools can improve the precision of the estimated parameters for binding affinity, K, and capacity, R. Furthermore, such programs can also calculate the uncertainty of the estimates e.g., as a percent coefficient of variation (%CV). However, because of unmeasured variability in specific activity, tracer purity, counting efficiency, counter background, efficiency of separation, etc., the actual uncertainty in the parameters K and R is usually much larger than stated. In an attempt to examine the effects of such artifacts, we have developed a computer program which simulates data arising from a number of commonly used experimental designs, and then intentionally distorted with each of these artifacts. Finally, the data are converted to B/F and B and plotted in the conventional Scatchard plot. Distortions revealed in this graph are indicative of the effect each artifact has on the parameter estimates. The computer program is generally written to simulate the binding of 2 or more ligands to one, two or many classes of independent or cooperative specific sites as well as to nonspecific sites. Thus, the program is applicable in a wide variety of situations. Results show that low tracer purity (“bindability”) or low filtration efficiency will significantly alter the measured R value. Poorly determined specific radioactivity may significantly alter the measured K value as well. Imprecise measurement of machine background may result in the specious appearance of positive cooperativity, or of additional high or low affinity classes of binding sites. Finally, under some circumstances, it is possible to detect and correct for the presence of these artifacts.  相似文献   

7.
Aminoglycosides bind to RNA and interfere with its function, and it has been suggested that aminoglycoside binding to RNA displaces essential divalent metal ions. Here we demonstrate that addition of various aminoglycosides inhibited Pb2+-induced cleavage of yeast tRNA(Phe). Cocrystallization of yeast tRNA(Phe) and an aminoglycoside, neomycin B, resulted in crystals that diffracted to 2.6 A and the structure of the complex was solved by molecular replacement. The structure shows that the neomycin B binding site overlaps with known divalent metal ion binding sites in yeast tRNA(Phe), providing direct evidence for the hypothesis that aminoglycosides displace metal ions. Additionally, the neomycin B binding site overlaps with major determinants for Escherichia coli phenylalanyl-tRNA-synthetase. Here we present data demonstrating that addition of neomycin B inhibited aminoacylation of E. coli tRNA(Phe) in the mid microM range. Given that aminoglycoside and metal ion binding sites overlap, we discuss that aminoglycosides can be considered as 'metal mimics'.  相似文献   

8.
9.
Time‐of‐flight secondary‐ion mass spectrometry (TOF‐SIMS), a powerful analytical technique sensitive to all components of perovskite solar cell (PSC) materials, can differentiate between the various organic species within a PSC absorber or a complete device stack. The ability to probe chemical gradients through the depth of a device (both organic and inorganic), with down to 100 nm lateral resolution, can lead to unique insights into the relationships between chemistry in the absorber bulk, at grain boundaries, and at interfaces as well as how they relate to changes in performance and/or stability. In this review, the technique is described; then, from the literature, several examples of how TOF‐SIMS have been used to provide unique insight into PSC absorbers and devices are covered. Finally, the common artifacts that can be introduced if the data are improperly collected, as well as methods to mitigate these artifacts are discussed.  相似文献   

10.
Fluorescent protein probes now permit spatial distributions of specific intracellular signaling molecules to be observed in real time. Mathematical models have been used to simulate molecular gradients and other spatial patterns within cells, and the output of such models may be compared directly with experiments if the binding of the fluorescent probe and the physics of the imaging technique are each incorporated. Here we present a comprehensive model describing the dynamics of 3′ phosphoinositides (PIs), lipid second messengers produced in the plasma membrane in response to stimulation of the PI 3-kinase signaling pathway, as monitored in the cell-substratum contact area using total internal reflection fluorescence microscopy. With this technique it was previously shown that uniform stimulation of fibroblasts with platelet-derived growth factor elicits the formation of axisymmetric 3′ PI gradients, which we now characterize in the context of our model. We find that upper and lower bounds on the relevant dimensionless model parameter values for an individual cell can be calculated from four well-defined fluorescence measurements. Based on our analysis, we expect that the key dimensionless group, the ratio of 3′ PI turnover and diffusion rates, can be estimated within ~20% or less.  相似文献   

11.
Prediction of peptide binding to human leukocyte antigen (HLA) molecules is essential to a wide range of clinical entities from vaccine design to stem cell transplant compatibility. Here we present a new structure-based methodology that applies robust computational tools to model peptide-HLA (p-HLA) binding interactions. The method leverages the structural conservation observed in p-HLA complexes to significantly reduce the search space and calculate the system's binding free energy. This approach is benchmarked against existing p-HLA complexes and the prediction performance is measured against a library of experimentally validated peptides. The effect on binding activity across a large set of high-affinity peptides is used to investigate amino acid mismatches reported as high-risk factors in hematopoietic stem cell transplantation.  相似文献   

12.
The binding of MgATP to purified Ca2+Mg2+-dependent adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum was studied by using a flow-dialysis method. Phosphoryl-enzyme formation and catalytic activity were also measured, and all three processes demonstrated negative co-operativity, with half-saturation of all three parameters at a MgATP concentration of 40-50muM, and a Hill coefficient (h) of 0.8. The variation of the binding constant with with pH was measured and showed tighter binding of MgATP with increasing pH over the range 6.8-8.5. Binding parameters for ATP analogues were also measured. The binding of Ca2+ in the presence and absence of ATP analogues gave half saturation at a Ca2+ concentration of 1.2-1.3muM. Hill plots of Ca2+-binding data gave a slope of 0.8. These results show that the binding of MgATP and Ca2+ can occur in a random manner, with neither substrate influencing the affinity of the enzyme for the other.  相似文献   

13.
《Journal of molecular biology》2019,431(19):3860-3870
Enzymes exhibit a strong long-range evolutionary constraint that extends from their catalytic site and affects even distant sites, where site-specific evolutionary rate increases monotonically with distance. While protein–protein sites in enzymes were previously shown to induce only a weak conservation gradient, a comprehensive relationship between different types of functional sites in proteins and the magnitude of evolutionary rate gradients they induce has yet to be established. Here, we systematically calculate the evolutionary rate (dN/dS) of sites as a function of distance from different types of binding sites in enzymes and other proteins: catalytic sites, non-catalytic ligand binding sites, allosteric binding sites, and protein–protein interaction sites. We show that catalytic sites indeed induce significantly stronger evolutionary rate gradient than all other types of non-catalytic binding sites. In addition, catalytic sites in enzymes with no known allosteric function still induce strong long-range conservation gradients. Notably, the weak long-range conservation gradients induced by non-catalytic binding sites in enzymes is nearly identical in magnitude to those induced by ligand binding sites in non-enzymes. Finally, we show that structural determinants such as local solvent exposure of sites cannot explain the observed difference between catalytic and non-catalytic functional sites. Our results suggest that enzymes and non-enzymes share similar evolutionary constraints only when examined from the perspective of non-catalytic functional sites. Hence, the unique evolutionary rate gradient from catalytic sites in enzymes is likely driven by the optimization of catalysis rather than ligand binding and allosteric functions.  相似文献   

14.
Reduced representation bisulfite sequencing (RRBS) is a powerful method of DNA methylome profiling that can be applied to single cells. However, no previous report has described how PCR-based duplication-induced artifacts affect the accuracy of this method when measuring DNA methylation levels. For quantifying the effects of duplication-induced artifacts on methylome profiling when using ultra-trace amounts of starting material, we developed a novel method, namely quantitative RRBS (Q-RRBS), in which PCR-induced duplication is excluded through the use of unique molecular identifiers (UMIs). By performing Q-RRBS on varying amounts of starting material, we determined that duplication-induced artifacts were more severe when small quantities of the starting material were used. However, through using the UMIs, we successfully eliminated these artifacts. In addition, Q-RRBS could accurately detect allele-specific methylation in absence of allele-specific genetic variants. Our results demonstrate that Q-RRBS is an optimal strategy for DNA methylation profiling of single cells or samples containing ultra-trace amounts of cells.  相似文献   

15.
Genomic SELEX is a method for studying the network of nucleic acid–protein interactions within any organism. Here we report the discovery of several interesting and potentially biologically important interactions using genomic SELEX. We have found that bacteriophage MS2 coat protein binds several Escherichia coli mRNA fragments more tightly than it binds the natural, well-studied, phage mRNA site. MS2 coat protein binds mRNA fragments from rffG (involved in formation of lipopolysaccharide in the bacterial outer membrane), ebgR (lactose utilization repressor), as well as from several other genes. Genomic SELEX may yield experimentally induced artifacts, such as molecules in which the fixed sequences participate in binding. We describe several methods (annealing of oligonucleotides complementary to fixed sequences or switching fixed sequences) to eliminate some, or almost all, of these artifacts. Such methods may be useful tools for both randomized sequence SELEX and genomic SELEX.  相似文献   

16.
17.
A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high‐throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high‐throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column.  相似文献   

18.
Fluorescence correlation spectroscopy with total internal reflection excitation (TIR-FCS) is a promising method with emerging biological applications for measuring binding dynamics of fluorescent molecules to a planar substrate as well as diffusion coefficients and concentrations at the interface. Models for correlation functions proposed so far are rather approximate for most conditions, since they neglect lateral diffusion of fluorophores. Here we propose accurate extensions of previously published models for axial correlation functions taking into account lateral diffusion through detection profiles realized in typical experiments. In addition, we consider the effects of surface-generated emission in objective-based TIR-FCS. The expressions for correlation functions presented here will facilitate quantitative and accurate measurements with TIR-FCS.  相似文献   

19.
Ions are an important component of the cell and affect the corresponding biological macromolecules either via direct binding or as a screening ion cloud. Although some ion binding is highly specific and frequently associated with the function of the macromolecule, other ions bind to the protein surface nonspecifically, presumably because the electrostatic attraction is strong enough to immobilize them. Here, we test such a scenario and demonstrate that experimentally identified surface-bound ions are located at a potential that facilitates binding, which indicates that the major driving force is the electrostatics. Without taking into consideration geometrical factors and structural fluctuations, we show that ions tend to be bound onto the protein surface at positions with strong potential but with polarity opposite to that of the ion. This observation is used to develop a method that uses a DelPhi-calculated potential map in conjunction with an in-house-developed clustering algorithm to predict nonspecific ion-binding sites. Although this approach distinguishes only the polarity of the ions, and not their chemical nature, it can predict nonspecific binding of positively or negatively charged ions with acceptable accuracy. One can use the predictions in the Poisson-Boltzmann approach by placing explicit ions in the predicted positions, which in turn will reduce the magnitude of the local potential and extend the limits of the Poisson-Boltzmann equation. In addition, one can use this approach to place the desired number of ions before conducting molecular-dynamics simulations to neutralize the net charge of the protein, because it was shown to perform better than standard screened Coulomb canned routines, or to predict ion-binding sites in proteins. This latter is especially true for proteins that are involved in ion transport, because such ions are loosely bound and very difficult to detect experimentally.  相似文献   

20.
Nitric oxide (NO) is an important regulator of angiogenesis and neovascularization. The nature of endothelial cell motility responses to NO was examined using a Boyden chamber method. NO generated via decomposition of either DEA/NO or DETA/NO produced increases in human umbilical vein endothelial cell (HUVEC) chemotaxis, which were completely abrogated by ODQ, a soluble guanylyl cyclase inhibitor. Measurements of NO either directly by chemiluminescence or its chemistry with diaminofluorescein revealed that chemotaxis was driven by subtle NO gradients between the lower and the upper wells in this system. In addition to diffusion and volatilization from the upper chambers, the data showed that HUVEC consumption of NO contributed to these sustained gradients. Comparison of DEA/NO- and DETA/NO-mediated responses suggested that the persistence of spatial NO gradients is as significant as the absolute magnitude of NO exposure per unit time. The findings suggest that subnanomolar NO gradients are sufficient to mobilize endothelial cell migration into hypoxic tissue during neovascularization events, such as in wound healing and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号