首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Structural and kinetic parameters of the -d-glucosidase (cellobiase, -d-glucoside glucohydrolase) from Coriolus versicolor have been determined. It is a high molecular weight glycoprotein (300,000 d) composed 10% by weight of protein, 90% by weight of carbohydrate in which glucose is the primary hexose sugar. The Km for 4-nitrophenyl--d-glucopyranoside (4 NPG) and cellobiose are 0.276 and 2.94 mM respectively at pH 4.5 and 40°. d-Glucose is a competitive inhibitor with a Ki of 1.8 mM with 4 NPG as substrate, and at high concentrations, cellobiose exhibits a substrate inhibition effect on the enzyme, so negating attempts to overcome the competitive inhibition of glucose by increasing the concentration of the substrate.  相似文献   

2.
This paper reports the isolation of mutants of the white-rot fungus Sporotrichum pulverulentum and the results of a survey of enzymic activity among these mutants. The strains were screened for extracellular cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and β-d-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) production in shake flask experiments. Apart from strain 63-2, strains 6, 63, 9, L5, E-1 and UV-18 showed equal or higher endo-1,4-β-d-glucanase (cellulase), filter paper-degrading and β-d-glucosidase activities than S. pulverulentum. The cellulase activity obtained, measured as filter paper activity, was comparable to that reported for Trichoderma reesei QM9414. However, the β-d-glucosidase activity was about six times higher than for the QM9414 strain. The pH and temperature-activity profiles of crude β-d-glucosidase preparations from the various strains were determined and were found to be identical. The thermal stability at pH 4.5 and 40°C was 5 days for all these preparations.  相似文献   

3.
H. grisea produced an extracellular -glucosidase (EC 3.2.1.21) at high activity in media supplemented with carboxymethyl cellulose (CMC) or cellobiose. Cellobiose-induced -glucosidase was insensitive to glucose repression whereas that of CMC-supplemented cultures was partially repressed. Molecular sieving revealed three main active components (Mr 50, 128 and 240 kDa). Glucose competitively inhibited -glucosidase activities with Ki values of 0.9mM and 3.3mM (extracellular) and 10.2mM and 22.6mM (cytosolic), induced in the presence of CMC or cellobiose respectively.The authors are with the Departamento de Biologia, Faculdade de Filosofia. Ciências e Letras de Ribeirão Preto, Universidade de São Paulo-14040-901 Ribeirão Preto, São Paulo, Brasil;  相似文献   

4.
Summary The degradation of three non-phenolic -O-4 diarylpropane lignin model compounds was studied in cultures of the white-rot fungus Phlebia radiata. The degradation pattern of the model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (I) was also compared with that of Phanerochaete chrysosporium under conditions where both fungi were cultivated without agitation in an oxygen atmosphere. Compound I was readily degraded by both fungi, and qualitatively the degradation patterns were quite similar. The product, after C-C bond cleavage, was veratraldehyde (IV) which was almost stoichiometrically reduced to veratryl alcohol (V). However, large amounts of V were detected only in P. chrysosporium cultures. Experiments with the model compound 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (II) showed that in the presence of II, the total amount of veratryl compounds accounted for 15–33 m in standing cultures of Phlebia radiata. The model compound 1-(3,4-dimethoxyphenyl)-2-(4-methoxyphenoxy) propane-1,3-diol (III) was more readily degraded than I and II. The results indicated that, in P. radiata cultures, the acting enzymes were lignin peroxidases and IV reducing enzyme, while laccase was less important. Offprint requests to: A. Hatakka  相似文献   

5.
A non-phenolic β-O-4 lignin substructure model, 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (I), was metabolized by a ligninolytic culture of Coriolus versicolor. Based on the identification of the metabolic products (II~XI), the following reactions were found to occur in the culture; a) oxidation (III) and reduction (II) at the benzyl (Cα′) position of the substrate (I), b) β-ether cleavage to give arylglycerols (IV, V), and c) Cα-Cβ cleavage of the arylglycerols and/or arylglycerol moiety of the substrate (I). In addition, β-deoxy diol (VI) and γ-formylglycerol (VII) were obtained as degradation products from substrate (I).  相似文献   

6.
A previously uncharacterized gene in Neosartorya fischeri was cloned and expressed in Escherichia coli. It was found to encode a β-glucosidase (NfBGL1) distinguishable from other BGLs by its high turnover of p-nitrophenyl β-d-glucopyranoside (pNPG). Molecular determinants for the substrate recognition of NfBGL1 were studied through an initial screening of residues by sequence alignment, a second screening by homology modeling and subsequent site-directed mutagenesis to alter individual screened residues. A conserved amino acid, E445, in the substrate binding pocket of wild-type NfBGL1 was identified as an important residue affecting substrate affinity. Replacement of E445 with amino acids other than aspartate significantly decreased the catalytic efficiency (kcat/Km) of NfBGL1 towards pNPG, mainly through decreased binding affinity. This was likely due to the disruption of hydrogen bonding between the substrate and the carboxylate oxygen of the residue at position 445. Density functional theory (DFT) based studies suggested that an acidic amino acid at position 445 raises the substrate affinity of NfBGL1 through hydrogen bonding. The residue E445 is completely conserved indicating that this position can be considered as a crucial determinant for the substrate binding among GHs tested.  相似文献   

7.
A number of mutant strains overproducing cellulase, β-glucosidase and xylanase enzyme were isolated from the cellulolytic fungus Penicillium pinophilum 87160iii after mutagenesis by u.v. irradiation and/or chemical treatment. Selection was carried out using either an agar-plate or an enrichment technique. Cellulase (filter paper-hydrolysing activity) production by some of the mutants in shake flask cultures was approximately four-fold higher than the wild-type strain; improvements in β-glucosidase production were of the order of eight- to-ninefold. The morphology of the mycelium of the mutants was quite different from that of the wild type. The mutants, for example, produced mycelium which was highly branched and thicker in cross section. In several of the mutants synthesis of xylanase and β-glucosidase was completely derepressed in the presence of glycerol, which was a known repressor of the synthesis of these enzymes. Several of the mutants produced β-glucosidase enzyme which showed altered kinetics of hydrolysis in the presence of inhibitors.  相似文献   

8.
9.
In this study, a β-glucosidase coding gene (bgl) of the zygomycete fungus Rhizomucor miehei has been cloned and characterized. The gene comprises a total of 2,826 bp including the coding sequence of a 717 amino acids length putative protein and 10 introns dispersed in the whole coding region. The putative N-and C-terminal catalytic domains (aa 68 to aa 274 and aa 358–601, respectively) were identified; the two domains are connected with a 84-amino-acids linker. The catalytic region showed an extensive sequence homology with other fungal β-glucosidases classified as family 3 glycoside hydrolases. The isolated Rhizomucor gene was expressed in the related fungus Mucor circinelloides. Transformant Mucor strains maintained the introduced plasmid in an autoreplicative manner and showed significantly higher cellobiase activity than the recipient strain.  相似文献   

10.
The culture-medium composition was optimised, on a shake-flask scale, for simultaneous production of high activities of endoglucanase and β-glucosidase by Thermoascus aurantiacus using statistical factorial designs. The optimised medium containing 40.2 g l−1 Solka Floc as the carbon source and 9 g l−1 soymeal as the organic nitrogen source yielded 1130 nkat ml−1 endoglucanase and 116 nkat ml−1β-glucosidase activities after 264 h as shake cultures. In addition, good levels of β-xylanase (3479 nkat ml−1) and low levels of filter-paper cellulase, β-xylosidase, α-l-arabinofuranosidase, β-mannanase, β-mannosidase, α-galactosidase and β-galactosidase were detected. Batch fermentation in a 5-l laboratory fermentor using the optimised medium allowed the production of 940 nkat ml−1 endoglucanase and 102 nkat ml−1β-glucosidase in 192 h. Endoglucanase and β-glucosidase showed optimum activity at pH 4.5 and pH 5, respectively, and they displayed optimum activity at 75 °C. Endoglucanase and β-glucosidase showed good stability at pH values 4–8 and 4–7, respectively, after a prolonged incubation (48 h at 50 °C). Endoglucanase had half-lives of 98 h at 70 °C and 4.1 h at 75 °C, while β-glucosidase had half-lives of 23.5 h at 70 °C and 1.7 h at 75 °C. Alkali-treated bagasse, steam-treated wheat straw, Solka floc and Sigmacell 50 were 66, 48.5, 33.5 and 14.4% hydrolysed by a crude enzyme complex of T. aurantiacus in 50 h. Received: 12 November 1999 / Accepted: 14 November 1999  相似文献   

11.
12.
Plant β-glucosidases catalyze the hydrolysis of glycosidic linkages and play a vital role in defense against pathogens and stress. The present work investigated the relationship between leaf development and β-glucosidase protein content in Olea europea L. (cv. Picual) leaves. The total chlorophyll content increased with leaf age in current-season leaves. Immunoblot analysis revealed that the content of 61 kD protein of β-glucosidase also increased with leaf age, and that the enzyme existed in three isoforms (pI 5.8–6.2). Statistical analysis indicated a strong correlation between chlorophyll and β-glucosidase protein contents.  相似文献   

13.
《Experimental mycology》1982,6(2):115-124
β-Glucosidase inTrichoderma reesei (QM 6a) can be induced by methyl-β-glucoside and less effectively by gentiobiose; other glycosides tested, including cellobiose, did not induce this enzyme. Sophorose (a β-1,2 dimer of glucose) at sub-micromolar concentrations repressed β-glucosidase, repression being only partially reversed after sophorose was removed. β-Glucosidase induction has no well-defined pH optimum, although in citrate buffer it is sharply enhanced around pH 3. The optimum temperature for induction is 28°C (at pH 3.0) and response to inducer concentration is hyperbolic. β-Glucosidase (1) is tightly associated with mycelium, (2) is produced with no detectable lag between the time inducer is absorbed and induction starts, and (3) is produced constitutively at low levels. The low, constitutive activity of β-glucosidase is more than adequate to theoretically account for respiration of the fungus on cellobiose.  相似文献   

14.
Adsorption of β-glucosidase from almonds, an enzyme with big molecular size (130?kDa, 6.7?nm molecular diameter), on mesoporous SBA-15 silica in fixed bed column was studied. Previously, zeta potential analysis confirmed that the electrostatic interactions between β-glucosidase and SBA-15 were the driving force of the immobilization process. The maximum difference in the zeta potential was 25?mV at pH 3.5. Adsorption isotherm was classified as an L3 (Langmuir type 3) curve according to the Giles classification and fitted to a double Langmuir equation. The adsorbed amount in a fixed bed column was around 3.5 times higher than the amount reached in the adsorption in batch. In addition, the β-glucosidase was strongly immobilized on SBA-15 with only 7?% of leaching in the washing step with buffer solution. Immobilized β-glucosidase was catalytically active in a continuous process, reaching 100?% substrate conversion and maintaining this activity level for more than 10?h without deactivation of the enzyme. Adsorption-desorption isotherms at 77?K before and after the adsorption were carried out, concluding that the adsorption of β-glucosidase was produced blocking the pore mouth, so that a part of the enzyme penetrates inside and another part stays outside the pore.  相似文献   

15.
An extracellular -glucosidase (EC 3.2.2.21) from the anaerobic fungus Piromyces sp. strain E2 was purified. The enzyme is a monomer with a molecular mass of 45 kDa and a pI of 4.15. The enzyme readily hydrolyzes p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, cellobiose, cellotriose, cellotetraose and cellopentaose but is not active towards Avicel, carboxymethylcellulose, xylan, p-nitrophenyl--d-galactoside and p-nitrophenyl--d-xyloside. To cleave p-nitrophenyl--d-glucoside the maximum activity is reached at pH 6.0 and 55°C, and the enzyme is stable up to 72 h at 40°C. Activity is inhibited by d-glucurono--lactone, cellobiose, sodium dodecyl sulfate, Hg2+ and Cu2+ cations. With p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, and. cellobiose as enzyme substrates, the K m and V max balues are 1.5 mM and 25.5 IU·mg-1, 1.1. mM and 133 IU·mg-1, and 0.05 mM and 55.6 IU·mg-1, respectively.  相似文献   

16.
《Process Biochemistry》2010,45(2):272-278
A mycelial β-glucosidase from the thermophilic mold Humicola insolens was purified and biochemically characterized. The enzyme showed carbohydrate content of 21% and apparent molecular mass of 94 kDa, as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed a single polypeptide band of 55 kDa, suggesting that the native enzyme was a homodimer. Mass spectrometry analysis showed amino acid sequence similarity with a β-glucosidase from Humicola grisea var. thermoidea, with about 22% coverage. Optima of temperature and pH were 60 °C and 6.0–6.5, respectively. The enzyme was stable up to 1 h at 50 °C and showed a half-life of approximately 44 min at 55 °C. The β-glucosidase hydrolyzed cellobiose, lactose, p-nitrophenyl-β-d-glucopyranoside, p-nitrophenyl-β-d-fucopyranoside, p-nitrophenyl-β-d-xylopyranoside, p-nitrophenyl-β-d-galactopyranoside, o-nitrophenyl-β-d-galactopyranoside, and salicin. Kinetic studies showed that p-nitrophenyl-β-d-fucopyranoside and cellobiose were the best enzyme substrates. Enzyme activity was stimulated by glucose or xylose at concentrations up to 400 mM, with maximal stimulatory effect (about 2-fold) around 40 mM. The high catalytic efficiency for the natural substrate, good thermal stability, strong stimulation by glucose or xylose, and tolerance to elevated concentrations of these monosaccharides qualify this enzyme for application in the hydrolysis of cellulosic materials.  相似文献   

17.
对利用白腐真菌Coriolus versicolor的菌丝球来催化染料酸性橙的降解作了报道。首先进行了不同初始浓度酸性橙的降解实验。在实验范围内,降解率随着初始浓度的增高而增高,平均降解率在91%左右。建立模型拟合了同一温度下不同初始浓度酸性橙降解的过程。初始浓度在20.99到101.6mg/L之间时,模型计算值与实验值大致吻合。考察了pH和温度对酸性橙降解的影响,发现菌丝球降解酸性橙的最适pH为6.0,温度以32℃左右为最佳。对补充了不同量碳源的酸性橙溶液进行重复分批降解实验表明,碳源的补充对重复分批降解是必不可少的。在重复过程中,降解率呈下降趋势。但在降解染料的同时添加适量的葡萄糖可以使菌丝的使用寿命显著延长。  相似文献   

18.
Summary In Trichoderma reesei, QM 9414, -glucosidase can be selectively induced by xylan. At a concentration of 0.5% xylan in the growth medium, the yield of -glucosidase is 3 times more than in cellulose medium suggesting that the synthesis of this enzyme in this organism is under an independent regulatory control.  相似文献   

19.
Monoterpenes are important aroma compounds in grape varieties such as Muscat, Gewürztraminer and Riesling, and are present as either odourless, glycosidically bound complexes or free aromatic monoterpenes. Commercial enzymes can be used to release the monoterpenes, but they commonly consist of crude extracts that often have unwanted and unpredictable side-effects on wine aroma. This project aims to address these problems by the expression and secretion of the Aspergillus awamoriα-l-arabinofuranosidase in combination with either the β-glucosidases from Saccharomycopsis fibuligera or from Aspergillus kawachii in the industrial yeast Saccharomyces cerevisiae VIN13. The concentration of five monoterpenes was monitored throughout alcoholic fermentation of Gewürztraminer grapes. The recombinant yeast strains that caused an early boost in the geraniol concentration led to a reduction in the final geraniol levels due to the downregulation of the sterol biosynthetic pathway. Monoterpene concentrations were also analysed 9 and 38 days after racking and the performance of the VB2 and VAB2 recombinant strains was similar, and in many cases, better than that of a commercial enzyme used in the same experiment. The results were backed by sensorial analysis, with the panel preferring the aroma of the wines produced by the VAB2 strain.  相似文献   

20.
Studies in shake-flasks showed that Aspergillus wentii produces the maximum activity of β-glucosidase among the cultures tested. The activity against cellobiose was about 2–3 fold that against 4NPG. Aspergillus wentii produced a maximum activity of 16.5 U/ml in 14 days on malt extract. It also produced a comparable amount on other simple soluble sugars, which indicates that it is constitutive and does not require an inducer. Peptone was found to the best nitrogen source for β-glucosidase production. Optimum C/N ratio was found to be 7.3. Phosphate, magnesium and trace metals did not play significant roles in the production of β-glucosidase when they were used with malt extract as a carbon source. An inoculum of 6% (v/v) of 20-h-old culture grown on malt extract produced the maxium β-glucosidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号