首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Life on earth has evolved in a sea of natural electromagnetic (EM) fields. Over the past century, this natural environment has sharply changed with introduction of a vast and growing spectrum of man-made EM fields. From models based on equilibrium thermodynamics and thermal effects, these fields were initially considered too weak to interact with biomolecular systems, and thus incapable of influencing physiological functions. Laboratory studies have tested a spectrum of EM fields for bioeffects at cell and molecular levels, focusing on exposures at athermal levels. A clear emergent conclusion is that many observed interactions are not based on tissue heating. Modulation of cell surface chemical events by weak EM fields indicates a major amplification of initial weak triggers associated with binding of hormones, antibodies, and neurotransmitters to their specific binding sites. Calcium ions play a key role in this amplification. These studies support new concepts of communication between cells across the barriers of cell membranes; and point with increasing certainty to an essential physical organization in living matter, at a far finer level than the structural and functional image defined in the chemistry of molecules. New collaborations between physical and biological scientists define common goals, seeking solutions to the physical nature of matter through a strong focus on biological matter. The evidence indicates mediation by highly nonlinear, nonequilibrium processes at critical steps in signal coupling across cell membranes. There is increasing evidence that these events relate to quantum states and resonant responses in biomolecular systems, and not to equilibrium thermodynamics associated with thermal energy exchanges and tissue heating.  相似文献   

2.
Selective control of cell function by applying specifically configured, weak, time-varying magnetic fields has added a new, exciting dimension to biology and medicine. Field parameters for therapeutic, pulsed electromagnetic field (PEMFs) were designed to induce voltages similar to those produced, normally, during dynamic mechanical deformation of connective tissues. As a result, a wide variety of challenging musculoskeletal disorders have been treated successfully over the past two decades. More than a quarter million patients with chronically ununited fractures have benefitted, worldwide, from this surgically non-invasive method, without risk, discomfort, or the high costs of operative repair. Many of the athermal bioresponses, at the cellular and subcellular levels, have been identified and found appropriate to correct or modify the pathologic processes for which PEMFs have been used. Not only is efficacy supported by these basic studies but by a number of double-blind trials. As understanding of mechanisms expands, specific requirements for field energetics are being defined and the range of treatable ills broadened. These include nerve regeneration, wound healing, graft behavior, diabetes, and myocardial and cerebral ischemia (heart attack and stroke), among other conditions. Preliminary data even suggest possible benefits in controlling malignancy.  相似文献   

3.
Ovarian and body cavity eggs from R. temporaria were exposed to radiofrequency (rf) electromagnetic fields in the frequency range 10-27 MHz with specific absorption rates (SAR) up to 800 W/kg. The effect of the exposure was investigated by measurement of the water-related cell physiological parameters, isotopic and osmotic water membrane permeability and density of the egg cells. Only the osmotic water permeability, Pf, of ovarian eggs was significantly altered. A decrease of about 30% was seen for SARs of 50 W/kg and exposure times up to 2 h. Tests ruled out that the effect was due to temperature increase during the exposure. The observed decrease of Pf was most likely due to cloudy swelling of the egg cytoplasm resulting from the rf irradiation.  相似文献   

4.
The production of ATP in mitochondria depends on the magnesium nuclear spin and magnetic moment of a Mg2+ ion in creatine kinase and ATPase. This suggests that enzymatic synthesis of ATP is an ion-radical process and thus depends on the external magnetic field (magnetobiology originates from this fact) and microwave fields, which control the spin states of ion-radical pairs and affect the ATP synthesis. The chemical mechanism of ATP synthesis and the origin of biological effects of electromagnetic (microwave) fields are discussed.  相似文献   

5.
ATP production in mitochondria depends on the nuclear spin and magnetic moment of Mg2+ ion in creatine kinase and ATPase. Consequently, the enzymatic synthesis of ATP is an ion-radical process and depends on the external magnetic field and microwave fields that control the spin states of ion-radical pairs and influence the ATP synthesis. The chemical mechanism of ATP synthesis and the origin of biological effects of electromagnetic (microwave) fields are discussed.  相似文献   

6.
7.
Groups of adult male Sprague Dawley rats (64 rats each) were exposed for 8 months to electromagnetic fields (EMF) of two different field strength combinations: 5μT - 1kV/m and 100μT - 5kV/m. A third group was sham exposed. Field exposure was 8 hrs/day for 5 days/week. Blood samples were collected for hematology determinations before the onset of exposure and at 12 week intervals. At sacrifice, liver, heart, mesenteric lymph nodes, bone marrow, and testes were collected for morphology and histology assessments, while the pineal gland and brain were collected for biochemical determinations. At both field strength combinations, no pathological changes were observed in animal growth rate, in morphology and histology of the collected tissue specimens (liver, heart, mesenteric lymph nodes, testes, bone marrow), and in serum chemistry. An increase in norepinephrine levels occurred in the pineal gland of rats exposed to the higher field strength. The major changes in the brain involved the opioid system in frontal cortex, parietal cortex, and hippocampus. From the present findings it may be hypothesized that EMF may cause alteration of some brain functions. Bioelectromagnetics 19:57–66, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.  相似文献   

9.
10.
This study investigated the effects of pulsed electromagnetic fields (PEMFs) on proteoglycan (PG) metabolism of human articular cartilage explants from patients with osteoarthritis (OA). Human cartilage explants, recovered from lateral and medial femoral condyles, were classified according to the International Cartilage Repair Society (ICRS) and graded based on Outerbridge scores. Explants cultured in the absence and presence of IL-1β were treated with PEMF (1.5 mT, 75 Hz) or IGF-I alone or in combination for 1 and 7 days. PG synthesis and release were determined. Results showed that explants derived from lateral and medial condyles scored OA grades I and III, respectively. In OA grade I explants, after 7 days exposure, PEMF and IGF-I significantly increased (35) S-sulfate incorporation 49% and 53%, respectively, compared to control, and counteracted the inhibitory effect of IL 1β (0.01 ng/ml). The combined exposure to PEMF and IGF-I was additive in all conditions. Similar results were obtained in OA grade III cartilage explants. In conclusion, PEMF and IGF-I augment cartilage explant anabolic activities, increase PG synthesis, and counteract the catabolic activity of IL-1β in OA grades I and III. We hypothesize that both IGF-I and PEMF have chondroprotective effects on human articular cartilage, particularly in early stages of OA.  相似文献   

11.
The issue of adverse health effects of extremely low-frequency electromagnetic fields (ELF-EMFs) is highly controversial. Contradictory results regarding the genotoxic potential of ELF-EMF have been reported in the literature. To test whether this controversy might reflect differences between the cellular targets examined we exposed cultured cells derived from different tissues to an intermittent ELF-EMF (50 Hz sinusoidal, 1 mT) for 1-24h. The alkaline and neutral comet assays were used to assess ELF-EMF-induced DNA strand breaks. We could identify three responder (human fibroblasts, human melanocytes, rat granulosa cells) and three non-responder cell types (human lymphocytes, human monocytes, human skeletal muscle cells), which points to the significance of the cell system used when investigating genotoxic effects of ELF-EMF.  相似文献   

12.
Experiments were performed to detect possible physiological effects of air and simulated earth return electromagnetic fields of 45 and 75 Hz at 100 V/m on young mice. The criteria used were growth rate, serotonin metabolism and alteration in susceptibility to infection with influenza virus. There were no changes in these three categories.  相似文献   

13.
Several experiments with rhesus and squirrel monkeys on the influence of extremely low frequency (ELF) electromagnetic fields found no effects on behavior. Magnetic fields of 0.3 and 1.0 mT with electric fields of below 1 to 29 V/m at frequencies of 7, 10, 15, 45, 60 and 75 Hz were used. Small differences in ambulatory activity and response rate were occasionally observed, but no consistent effects between or within animals on any measures were obtained. No effects on reaction time, interresponse time, match-to-sample performance, and blood constituents were observed. Such previously reported effects may not be a consequence of ELF values alone, but are probably related to other environmental variables.Presented at the Seventh International Biometeorological Congress, 17–23 August 1975, College Park, Maryland, USA.  相似文献   

14.
The therapeutic effects of electric and magnetic fields have been studied largely for their promotion of connective tissue repair. The most widely studied application concerns bone repair and deals with acceleration of the healing of fresh fractures, delayed and non-unions, incorporation of bone grafts, osteoporosis, and osteonecrosis. More recently the effects of these fields upon the repair of cartilage and soft fibrous tissues have been described. In all these experimental systems and clinical applications an acceleration of extracellular matrix synthesis and tissue healing has been observed. A degree of specificity, in terms of the parameters of applied energy and biological response, is hypothesized.  相似文献   

15.
《Mutation Research Letters》1995,346(3):151-157
Incubation of human peripheral blood cultures in the presence of an electromagnetic field (EMF) of 50 Hz and 5 mT leads to stimulation of the cell cycle of dividing lymphocytes but has no influence on the frequencies of sister-chromatid exchanges. Comparative studies with two different exposure systems and with different culture temperatures indicate that the effect on the cell cycle results from the EMF and is not a thermal effect. These data support the assumption that with respect to their suspected carcinogenic effects EMFs have no initiating but probably promoting effects.  相似文献   

16.
There is ample experimental evidence that changes of earth-strength static magnetic fields, pulsed magnetic fields, or alternating electric fields (60 Hz) depress the nocturnally enhanced melatonin synthesis of the pineal gland of certain mammals. No data on the effects of high-frequency electromagnetic fields on melatonin synthesis is available. In the present study, exposure to 900 MHz electromagnetic fields [0.1 to 0.6 mW/cm2, approximately 0.06 to 0.36 W/kg specific absorption rate (SAR) in rats and 0.04 W/kg in Djungarian hamsters; both continuous and/or pulsed at 217 Hz, for 15 min to 6 h] at day or night had no notable short-term effect on pineal melatonin synthesis in male and female Sprague-Dawley rats and Djungarian hamsters. Pineal synaptic ribbon profile numbers (studied in rats only) were likewise not affected. The 900 MHz electromagnetic fields, unpulsed or pulsed at 217 Hz, as applied in the present study, have no short-term effect on the mammalian pineal gland. Bioelectromagnetics 18:376–387, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The ultralow-intensity electromagnetic fields (EMF, frequency of 4200, modulated by a quasistochastic signal in the range of 20-20,000 Hz, power density of 15 microW/cm2, specific body absorption rate up to 4.5 mJ/kg) potentiated the hypnogenic effect of hexenal. The exposure to the EMF shortened the time of falling asleep induced by this drug and increased sleep duration in rats. The exposure to the EMF also potentiated haloperidol catalepsy: it decreased the drug threshold dose and increased the catalepsy duration. The EMF influence on the haloperidol effects was of a prolonged character: it was manifest in a selected suppression of the emotional excitation in the open-field test within 24 hours after the exposure.  相似文献   

18.
Salmonella typhimurium and Drosophila melanogaster were exposed to continuous wave (CW) 2.45-GHz electromagnetic radiation, pulsed 3.10-GHz electromagnetic radiation, CW 27.12-MHz magnetic fields, or CW 27.12-MHz electric fields (only Drosophila). The temperatures of the treated sample and the nonexposed control sample were kept constant. The temperature difference between exposed and control samples was less than +/- 0.3 degrees C. Ames' assays were made on bacteria that had been exposed to microwaves (SAR 60-130 W/kg) or RF fields (SAR up to 20 W/kg) when growing exponentially in nutrient broth. Survival and number of induced revertants to histidine prototrophy were determined by common plating techniques on rich and minimal agar plates. The Drosophila test consisted of a sensitive somatic system where the mutagenicity was measured by means of mutations in a gene-controlling eye pigmentation. In none of these test systems did microwave or radiofrequency fields induce an elevated mutation frequency. However, a significantly higher concentration of cells was found in the bacterial cultures exposed to the 27-MHz magnetic field or 2.45-GHz CW and 3.10-GHz pulsed microwave radiation.  相似文献   

19.
The interaction of a dipole antenna with a human eye model in the presence of a metamaterial is investigated in this paper. The finite difference time domain (FDTD) method with convolutional perfectly matched layer (CPML) formulation have been used. A three-dimensional anatomical model of the human eye with resolution of 1.25 mm × 1.25 mm × 1.25 mm was used in this study. The dipole antenna was driven by modulated Gaussian pulse and the numerical study is performed with dipole operating at 900 MHz. The analysis has been done by varying the size and value of electric permittivity of the metamaterial. By normalizing the peak SAR (1 g and 10 g) to 1 W for all examined cases, we observed how the SAR values are not affected by the different permittivity values with the size of the metamaterial kept fixed.  相似文献   

20.
The effects of electromagnetic fields (EMFs) in physiotherapy have been discussed mainly with regard to the patient's safety, while the operator's safety is neglected. This paper presents the medical assessment and specific tendencies in the health status of personnel in physical therapy wards – where the EMFs are everyday background factor. This paper summarizes the somatic part of results from the study among physiotherapy personnel from facilities with different equipment and work load by using survey card designed by us for health status screening in somatic and neurobehavioral aspects. The main specific somatic findings and complaints in investigated group include parodontosis – 42%; cardiovascular disorders – 41.6%; allergic conditions with skin or systemic manifestation – 40.8%; photosensibilization – 34.1%; skin diseases – 31.5%; musculoskeletal disorders – 30.0% and neoplasm disorders – 7.5%. Keeping in mind that better part of the personnel in the physical therapy units is female, a special attention was paid to the pathology of the reproductive system; menstrual disturbances are observed in 20.0%. These findings are collected in complex for the first time in physiotherapy personnel, and when data were available from other professional groups, we found a good correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号