首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Either systemic or central administration of apomorphine produced dose-related decreases in rectal temperature at ambient temperatures (Ta) of 8 and 22 degrees C in rats. At Ta = 8 degrees C, the hypothermia was brought about by a decrease in metabolic rate (M). At Ta = 22 degrees C, the hypothermia was due to an increase in mean skin temperature, an increase in respiratory evaporative heat loss (Eres) and a decrease in M. This increased mean skin temperature was due to increased tail and foot skin temperatures. However, at Ta = 29 degrees C, apomorphine produced increased rectal temperatures due to increased M and decreased Eres. Moreover, the apomorphine-induced hypothermia or hyperthermia was antagonized by either haloperidol or 6-hydroxydopamine, but not by 5,6-dihydroxytryptamine. The data indicate that apomorphine acts on dopamine neurons within brain, with both pre- and post-synaptic sites of action, to influence body temperature.  相似文献   

2.
1. Evaporative heat loss, O2 consumption, CO2 production, and internal body temperature were measured in unanesthetized, unrestrained bobwhite (Colinus virginianus) at specific ambient temperatures (Ta). 2. No significant change in body temperature occurred at any Ta tested, but metabolic heat production (H) increased from 42.17 W/m2 at Ta 35 degrees C to 102.89 W/m2 at Ta 10 degrees C. 3. Evaporative heat loss (E) increased approximately two-fold from Ta 10-35 degrees C, with E/H increasing exponentially over the same temperature range. 4. No significant change in thermal insulation occurred from Ta 10-30 degrees C. 5. Combined convective and radiative heat transfer for the bobwhite was 2.96 W/m2 X C from Ta 10-35 degrees C.  相似文献   

3.
The interpeak latencies (IPLs) of the acoustically evoked brain stem potentials depend on brain stem temperature. This was used to see whether face fanning during hyperthermia lowers brain stem temperature. In 15 subjects, three thermally stable conditions were maintained by a water bath. In each condition the IPLs were determined in 10 separate trials. In condition A esophageal temperature (Tes) was 36.9 +/- 0.3 degrees C and increased to 38.6 +/- 0.2 degrees C in condition B. In conditions A and B the head was enclosed in a ventilated hood (air temperature 38 degrees C, relative humidity 100%) to suppress any direct heat loss from the head. From conditions A to B the IPL at peaks I-V decreased by 0.146 ms/degrees C change in Tes, reflecting a change in brain stem temperature. In condition C the hood was removed and the face was fanned by a cold air-stream (8-15 degrees C, 4-10 m/s) to maximize direct heat loss from the head. Skin temperature at the sweating forehead decreased from 38 to 23 degrees C, whereas Tes in condition C was maintained at the same level as in condition B (38.5 +/- 0.2 degrees C). The IPL at peaks I-V showed no difference between conditions B and C. It is concluded that face fanning in hyperthermic subjects does not dissociate brain stem temperature from Tes.  相似文献   

4.
The rate of sensible heat loss from a Clun Forest ewe was studied at several fleece depths in a temperature-controlled chamber. A simple resistance analogue was used to describe the heat flow from different body regions. Heat loss from the trunk depends largely on the mean fleece depth l. The fleece resistance was about 1.5 s cm-1 per centimetre depth. Heat transfer through the fleece was accounted for by molecular conduction, thermal radiation and free convection. The fleece conductivity -kb attributed to free convection depends on the mean temperature difference (-Tst---Tct) across the fleece according to the relation -kb = 8.0 (-Tst---Tct)0.53. Estimates of the sensible heat flux from the trunk at environmental temperatures, Ta, between 0 and 30 degrees C range from about 8 W (l = 7.0 cm, Ta = 30 degrees C) to about 160 W (l = 0.1 cm, Ta = 0 degrees C). In contrast, the sensible heat loss from the legs depends mainly on the local tissue resistance. For environmental temperatures between 0 and 30 degrees C, the calculated tissue resistance for this region of the body varied from about 8 to 1 s cm-1. The corresponding heat loss from the legs was between 10 and 20 W, compared with between 3 and 7 W from the head. The fastest heat loss from the legs occurred at an environmental temperature of about 12 degrees C. Although the proportion of the heat loss from the extremities depends on environmental temperature, the total heat loss (sensible or latent) was closely related to the mean skin temperature of the trunk.  相似文献   

5.
By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.  相似文献   

6.
Thermoregulatory benefits of cold-induced changes in breathing pattern and mechanism(s) by which cold induces hypoventilation were investigated using male Holstein calves (1-3 mo old). Effects of ambient temperatures (Ta) between 4 and 18 degrees C on ventilatory parameters and respiratory heat loss (RHL) were determined in four calves. As Ta decreased, respiratory frequency decreased 29%, tidal volume increased 35%, total ventilation and RHL did not change, and the percentage of metabolic rate attributed to RHL decreased 26%. Total ventilation was stimulated by increasing inspired CO2 in six calves (Ta 4-6 degrees C), and a positive relationship existed between respiratory frequency and expired air temperature. Therefore, cold-exposed calves conserve respiratory heat by decreasing expired air temperature and dead space ventilation. Compared with thermoneutral exposure (16-18 degrees C), hypoventilation was induced by airway cold exposure (4-6 degrees C) alone and by exposing the body but not the airways to cold. Blocking nasal thermoreceptors with topical lidocaine during airway cold exposure prevented the ventilatory response but did not lower hypothalamic temperature. Hypothalamic cooling (Ta 16-18 degrees C) did not produce a ventilatory response. Thus, airway temperature but not hypothalamic temperature appears to control ventilation in cold-exposed calves.  相似文献   

7.
1. Temperatures of different body surface regions and deep body temperature (Tb) of unrestrained adult Mongolia gerbils exposed to ambient temperatures (Ta) of -10-35 degrees C were measured using infrared (i.r.) thermography and a thermocouple. 2. A strong positive linear relationship between the surface temperature and Ta was found. For Ta range -4-35 degrees C, the slope was lowest for the areas around the eyes and dorsal head, and steepest for the body extremities. At -10 degrees C, surface temperatures of the areas around the eyes and dorsal head were significantly lower then predicted. 3. Tb was lowest at Ta of 25 and 30 degrees C, increased at all temperatures above and up to Ta of -4 degrees C below this range, and began decline at -10 degrees C. 4. The thermoneutral zone (TNZ) is probably between 28 and 32 degrees C, and the absolute lower critical temperature (Tabsl) is probably -4 degrees C. 5. The Mongolian gerbil shows little control of surface temperature and in contrast to larger mammals it has not developed any special thermoregulatory surface areas to regulate heat exchange with its environment. At temperatures below -4 degrees C, this species is unable to maintain the surface temperature of body extremities above the freezing point. 6. It is suggested that the Mongolian gerbil uses mainly behavioral and ecological adaptive strategies to attenuate the stressful effects of its habitat.  相似文献   

8.
A mathematical model of heat balance in human infants suggests that it may be possible for severe hyperthermia to develop if an infant is unable to remove his blankets in response to overheating (thermal entrapment). This hypothesis was tested in an animal model of weanling piglets. Ten piglets were warmed in a radiant heater to rectal temperature of 41 degrees C to simulate a fever. Animals in the experimental and control groups were removed from the heater and covered with ordinary infant blankets (to a thickness of approximately 3 cm). Endogenously produced heat caused the animals to warm to 42 degrees C. At this point, the control animals were uncovered. They rapidly cooled to normal body temperature. Animals in the experimental group remained covered until they expired from hyperthermia at 43.9 +/- 0.7 degrees C (SD) after 96 +/- 43 (SD) min. These data show that lethal hyperthermia may result from thermal entrapment. This finding may help clarify the role that hyperthermia may play in illnesses such as hemorrhagic shock and encephalopathy syndrome and some cases of sudden infant death syndrome.  相似文献   

9.
Six male New Zealand white rabbits were individually exposed to 600 MHz radiofrequency (RF) radiation for 90 min in a waveguide exposure system at an ambient temperature (Ta) of 20 or 30 degrees C. Immediately after exposure, the rabbit was removed from the exposure chamber and its colonic and ear skin temperatures were quickly measured. The whole-body specific absorption rate (SAR) required to increase colonic and ear skin temperature was determined. At a Ta of 20 degrees C the threshold SAR for elevating colonic and ear skin temperature was 0.64 and 0.26 W/kg, respectively. At a Ta of 30 degrees C the threshold SARs were slightly less than at 20 degrees C, with values of 0.26 W/kg for elevating colonic temperature and 0.19 W/kg for elevating ear skin temperature. The relationship between heat load and elevation in deep body temperature shown in this study at 600 MHz is similar to past studies which employed much higher frequencies of RF radiation (2450-2884 MHz). On the other hand, comparison of these data with studies on exercise-induced heat production and thermoregulation in the rabbit suggest that the relationship between heat gain and elevation in body temperature in exercise and from exposure to RF radiation may differ considerably. When combined with other studies, it was shown that the logarithm of the SAR required for a 1.0 degree C elevation in deep body temperature of the rabbit, rat, hamster, and mouse was inversely related to the logarithm of body mass. The results of this study are consistent with the conclusion that body mass strongly influences thermoregulatory sensitivity of the aforementioned laboratory mammals during exposure to RF radiation.  相似文献   

10.
Two kinkajous (Potos flavus, Procyonidae) showed marked nycthemeral variations in their rectal temperature. The mean Tr at night was 38.1 +/- 0.4 degrees C SD and 36.0 +/- 0.6 degrees C SD while resting during the day. Body temperature and O2-consumption were measured at ambient temperatures from 5-35 degrees C. With one exception at 35 degrees C, hypo- or hyperthermia was never observed. At air temperatures above 30 degrees C the bears reacted with behavioural responses. O2-consumption was minimal at Ta's from 23-30 degrees C. The mean basal metabolic rate was 0.316 ml O2 g-1 h-1 which is only 65% of the expected value according to the Kleiber formula. Below 23 degrees C heat production followed the equation : y (ml O2 g-1 h-1) = 0.727--0.018 Ta. The minimal thermal conductance was 90% of the predicted value according to the formula : C (ml O2 g-1 h-1 degrees C-1) = 1.02 W-0.505 (HERREID & KESSEL, 1967). Kinkajous are another distinct exception to the mouse to elephant curve.  相似文献   

11.
Tre of the suricates exhibits a marked diurnal rhythm (mean Tre at night 36.3 +/- 0.6 degrees C and 38.3 +/- 0.5 degrees C during the day). Oxygen consumption is lowest at Ta 30-32.5 degrees C (mean 0.365 +/- 0.022 ml O2 g-1 hr-1); this is 42% below the value expected from body mass. At Ta below the TNZ, oxygen uptake rises rapidly, minimal thermal conductance (0.040 ml O2 g-1 h-1 degrees C-1) being 18% above the mass-specific level. Lowest heart rates occur at Ta 30 degrees C (mean 109.6 +/- 9.8 beats min-1) and oxygen pulse is minimal at Ta 30-35 degrees C with 40-45 microliter O2 beat-1. At Ta 15-32.5 degrees C total evaporative water loss is between 0.46-0.63 ml H2O kg-1 hr-1 and increases markedly during heat stress (to a mean of 5.35 ml H2O kg-1 hr-1 at Ta 40 degrees C). This rise of TEWL is mainly attributable to the onset of panting at Ta above 35 degrees C.  相似文献   

12.
Five males [age 28 +/- 8 yr; maximum O2 uptake (VO2max) 50 +/- 6 ml O2 . kg-1 . min-1; body wt 70 +/- 3 kg; DuBois surface area 1.85 +/- 0.02 m2] exercised on a cycle ergometer, placed on a Potter scale, at 31% VO2max for up to 2 h at an ambient temperature (Ta) of 25 degrees C and a dew-point temperature of 15 degrees C. Air movement was varied from still air to 0.4 and 2 m/s. Each subject, in separate runs, wore a track suit (TS ensemble) of 60% polyester-40% cotton (effective clo = 0.5); a Gortex parka (GOR ensemble), covering a sweat shirt and bottom of TS (effective clo = 1.4); or the TS ensemble covered by polyethylene overgarment (POG ensemble). Esophageal, skin temperature (Tsk) at eight sites, and heart rate were continuously recorded. Dew-point sensors recorded temperatures under the garments at ambient and chest (windward site) and midscapular sites. Local skin wettedness (loc w) and ratio of evaporative heat loss (Esk) to maximum evaporative capacity were determined. An observed average effective permeation (Pe, W . m-2 . Torr-1) was calculated as Esk/loc w (Ps,sk - Pw), where w is the average of chest and back loc w and (Ps,sk - Pw) is the gradient of skin saturation vapor pressure at Tsk and Ta. Additionally, the local effective evaporative coefficient was determined for chest and back sites by Esk/(Ps,dpl - Pw). The GOR ensemble produced an almost as high a Pe as the TS ensemble (82-86% of Pe with TS in still air and 0.4- and 2-m/s conditions). Direct dew-point recording offers an easy practical dimension to the study of efficacy of latent heat loss and skin wettedness properties through garments.  相似文献   

13.
The Angolan free-tailed bat (Mops condylurus) uses roosts that often exceed 40 degrees C, an ambient temperature (Ta) that is lethal to many microchiropterans. We measured the physiological responses of this species at Ta's from 15 degrees to 45 degrees C. Torpor was commonly employed during the day at the lower Ta, but the bats generally remained euthermic at night, with a mean body temperature (Tb) of 35.2 degrees C. Metabolic rate reflected the pattern of Tb, increasing with falling Ta at night but decreasing during the day. Metabolic rate and evaporative losses were lower in torpid than in euthermic bats. Body temperature increased at each Ta >35 degrees C and was 43 degrees C at Ta of 45 degrees C. At Ta of 40 degrees C bats increased dry thermal conductance and evaporative heat loss compared to lower Ta. At 45 degrees C dry thermal conductance was lower than at 40 degrees C and evaporative heat loss was 132% of metabolic heat production. At high Ta there was only a slight increase in metabolic rate despite the employment of evaporative cooling mechanisms and an increase in Tb. Collectively our results suggest that M. condylurus is well suited to tolerate high Ta, and this may enable it to exploit thermally challenging roost sites and to colonise habitats and exploit food sources where less stressful roosts are limiting.  相似文献   

14.
The data collected by the authors in four experimental series have been analysed together with data from the literature, to study the relationship between mean skin temperature and climatic parameters, subject metabolic rate and clothing insulation. The subjects involved in the various studies were young male subjects, unacclimatized to heat. The range of conditions examined involved mean skin temperatures between 33 degrees C and 38 degrees C, air temperatures (Ta) between 23 degrees C and 50 degrees C, ambient water vapour pressures (Pa) between 1 and 4.8 kPa, air velocities (Va) between 0.2 and 0.9 m.s-1, metabolic rates (M) between 50 and 270 W.m-2, and Clo values between 0.1 and 0.6. In 95% of the data, mean radiant temperature was within +/- 3 degrees C of air temperature. Based on 190 data averaged over individual values, the following equation was derived by a multiple linear regression technique: Tsk = 30.0 + 0.138 Ta + 0.254 Pa-0.57 Va + 1.28.10(-3) M-0.553 Clo. This equation was used to predict mean skin temperature from 629 individual data. The difference between observed and predicted values was within +/- 0.6 degrees C in 70% of the cases and within +/- 1 degrees C in 90% of the cases. It is concluded that the proposed formula may be used to predict mean skin temperature with satisfactory accuracy in nude to lightly clad subjects exposed to warm ambient conditions with no significant radiant heat load.  相似文献   

15.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.  相似文献   

16.
The metabolic, thermal, and cardiovascular responses of two male Caucasians to 1 2 h exposure to ambient temperature ranging between 28 degrees C and 5 degrees C were studied and related to the respective ambient temperatures. The metabolic heat production increased linearly with decreasing ambient temperature, where heat production (kcal times m- minus 2 times h- minus 1) = minus 2.79 Ta degrees C + 103.4, r = -0.97, P smaller than 0.001. During all exposures below 28 degrees C, the rate of decrease in mean skin temperature (Tsk) was found to be an exponential function dependent upon the ambient temperature (Ta) and the time of exposure. Reestablishment of Tsk steady state occurred at 90-120 min of exposure, and the time needed to attain steady state was linearly related to decreasing Ta. The net result was that a constant ratio of 1.5 of the external thermal gradient to the internal thermal gradient was obtained, and at all experimental temperatures, the whole body heat transfer coefficient remained constant. Cardiac output was inversely related to decreasing Ta, where cardiac output (Q) = minus 0.25 Ta degrees C + 14.0, r = minus 0.92, P smaller than 0.01. However, the primary reason for the increased Q, the stroke output, was also described as a third-order polynomial, although the increasing stroke volume throughout the Ta range (28-5 degrees C) was linearly related to decreasing ambients. The non-linear response of this parameter which occurred at 20 degrees C larger than or equal to Ta larger than or equal to 10 degrees C suggested that the organism's cardiac output response was an integration of the depressed heart rate response and the increasing stroke output at these temperatures.  相似文献   

17.
Water imbalance during flight is considered to be a potentially limiting factor for flight ranges in migrating birds, but empirical data are scarce. We studied flights under controlled ambient conditions with rose-colored starlings in a wind tunnel. In one experiment, we measured water fluxes with stable isotopes at a range of flight speeds (9-14 m s(-1)) at constant temperature (15 degrees C). In a second experiment, we measured evaporation rates at variable ambient temperatures (Ta = 5 deg -27 deg C) but constant speed (12 m s(-1)). During all flights, the birds experienced a net water loss. On average, water influx was 0.98 g h(-1) (SD = 0.16; n = 8), and water efflux was 1.29 g h(-1) (SD = 0.14; n = 8), irrespective of flight speed. Evaporation was related to temperature in a biphasic pattern. At temperatures below 18.2 degrees C, net evaporation was constant at 0.36 g h(-1) (SD = 0.18; n = 10), rising at higher temperatures with a slope of 0.11 per degree to about 1.5 g h(-1) at 27 degrees C. We calculated the relative proportion of dry and evaporative heat loss during flight. Evaporative heat loss at Ta < 18.2 deg C was 14% of total heat production during flight, and dry heat loss accounted for 84%. At higher temperatures, evaporative heat loss increased linearly with T(a) to about 25% at 27 degrees C. Our data suggest that for prolonged flights, rose-colored starlings should adopt behavioral water-saving strategies and that they cannot complete their annual migration without stopovers to replenish their water reserves.  相似文献   

18.
The present study examined the heat loss response of heat-acclimated rats to direct body heating with an intraperitoneal heater or to indirect warming by elevating the ambient temperature (Ta). The heat acclimation of the rats was attained through exposure to Ta of 33 or 36 degrees C for 5 h daily during 15 consecutive days. Control rats were kept at Ta of 24 degrees C for the same acclimation period. Heat acclimation lowered the body core temperature at Ta of 24 degrees C, and the core temperature level was lowered as acclimation temperature increased. When heat was applied by direct body heating, the threshold hypothalamic temperature (Thy) for the tail skin vasodilation was also lower in heat-acclimated rats than in the control rats. However, the amount of increase in Thy from the resting level to the threshold was the same in all three groups. When heat was applied by indirect warming, threshold Thy was slightly higher in heat-acclimated than in control rats. The amount of increase in Thy from the resting level to the threshold was significantly greater in heat-acclimated rats. In addition, Ta and the skin temperature at the onset of skin vasodilation were significantly higher in heat-acclimated rats. The results indicate that heat-acclimated rats were less sensitive to the increase in skin temperature in terms of threshold Thy. The gain constant of nonevaporative heat loss response was assessed by plotting total thermal conductance against Thy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Core temperature decreases throughout short-term maximal exercise in heart-failure patients. To investigate possible causes for this unusual response to exercise, we studied core (pulmonary arterial blood), femoral vein, muscle, and skin temperatures in eight patients with severe heart failure who performed maximal upright incremental bicycle exercise to 50 W. A normal group (n = 4) was exercised for comparison. In the heart-failure patients, core temperature was 36.95 +/- 0.37 degrees C at rest, significantly (P less than 0.05) decreased at 25 W of exercise to 36.59 +/- 0.40 degrees C, and at 50 W remained decreased to 36.57 +/- 0.40 degrees C. In comparison, we found that the resting core temperature in the normal subjects was 37.28 +/- 0.34 degrees C, was the same at 25 W (37.29 +/- 0.41 degrees C), and increased significantly (P less than 0.05) to 37.50 +/- 0.32 degrees C at 50 W of exercise. Femoral vein temperature in heart-failure patients (n = 6) was below core temperature throughout exercise to 25 and 50 W (36.22 +/- 0.62 and 36.34 +/- 0.65 degrees C, respectively). Muscle temperature (n = 7) was significantly (P less than 0.05) lower in the heart-failure patients (34.8 +/- 1.1 degrees C) at rest compared with the normal subjects (36.2 +/- 1.0 degrees C). During exercise, muscle temperature increased above core temperature in only four of the heart-failure patients and was significantly (P less than 0.05) lower (36.5 +/- 1.3 degrees C) compared with the normal subjects (38.0 +/- 0.2 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Resting subjects were immersed for 30 min in water at 22 and 30 degrees C after drinking alcohol. Total ventilation, end-tidal PCO2, rectal temperature, aural temperature, mean skin temperature, heart rate, and oxygen consumption were recorded during the experiments. Blood samples taken before the immersion period were analyzed by gas-liquid chromatography. The mean blood alcohol levels were 82.50 +/- 9.93 mg.(100 ml)-1 and 100.6 +/- 12.64 mg (100 ml)-1 for the immersions at 22 and 30 degrees C, respectively. There was no significant change in body temperature measured aurally or rectally, mean surface skin temperature, or heart rate at either water temperature tested. Total expired ventilation was significantly attenuated for the last 15 min of the immersion at 22 degrees C, after alcohol consumption as compared to the ventilation change in water at 22 degrees C without ethanol. This response was not consistently significantly altered during immersion in water at 30 degrees C. It is evident that during a 30-min immersion in tepid water with a high blood alcohol level, body heat loss is not affected but some changes in ventilation do occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号