首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A polyclonal antisera against rat brown adipose tissue mitochondrial uncoupling protein was used to examine mitochondrial samples from liver and white and brown adipose tissue from several mammalian species. A sodium dodecyl sulfate--polyacrylamide gel electrophoretic separation of proteins combined with an immunochemical method allowed for visualization of antigen--antibody complexes on nitrocellulose blots. Hamster, cavy, monkey, and mouse brown adipose tissue mitochondrial samples cross-reacted with the antisera. Mitochondria prepared from white fat obtained from young swine and sheep contained two closely migrating, antigenically active proteins. Hepatic mitochondria samples did not contain antigenically active protein. Reflectance densitometry was used for quantitation of the uncoupling protein in various mitochondrial samples. In rats fed diets low in protein, there appears to be a dissociation between the concentration of uncoupling protein and the number of nucleotide binding sites as given by the [3H]GDP binding assay. These results are indicative of a physiological activation of the uncoupling protein.  相似文献   

2.
Outside the nervous system, members of the mitochondrial uncoupling protein (UCP) family have been proposed to contribute to control of body temperature and energy metabolism, and regulation of mitochondrial production of reactive oxygen species (ROS). However, the function of brain mitochondrial carrier protein 1 (BMCP1), which is highly expressed in brain, remains to be determined. To study BMCP1 expression and function in the nervous system, a high-affinity antibody to BMCP1 was generated and used to analyze tissue expression of BMCP1 protein in mouse. BMCP1 protein was highly expressed in heart and kidney, but not liver or lung. In the nervous system, BMCP1 was present in cortex, basal ganglia, substantia nigra, cerebellum, and spinal cord. Both BMCP1 mRNA and protein expression was almost exclusively neuronal. To study the effect of BMCP1 expression on mitochondrial function, neuronal (GT1-1) cell lines with stable overexpression of BMCP1 were generated. Transfected cells had higher State 4 respiration and lower mitochondrial membrane potential (psi(m)), consistent with greater mitochondrial uncoupling. BMCP1 expression also decreased mitochondrial production of ROS. These data suggest that BMCP1 can modify mitochondrial respiratory efficiency and mitochondrial oxidant production, and raise the possibility that BMCP1 might alter the vulnerability of brain to both acute injury and to neurodegenerative conditions.  相似文献   

3.
M E Lean  W P James 《FEBS letters》1983,163(2):235-240
A protein of Mr 32 000 has been isolated from human infant brown adipose tissue mitochondria following the procedure used to purify the uncoupling protein from rat brown adipose tissue mitochondria. A specific antiserum has been raised against the human 32 kDa protein, and used to detect it by probing mitochondrial proteins separated by SDS-PAGE. The protein is present in large amounts in brown adipose tissue but is undetectable in human liver, heart or white adipose tissue. It has strong immunological cross-reactivity with rat brown adipose tissue uncoupling protein.  相似文献   

4.
We report the molecular cloning of a novel cDNA fragment from lamprey encoding a 313-amino acid protein that is highly homologous to human uncoupling proteins (UCP). We therefore named the protein lamprey UCP. This lamprey UCP, rat UCP1, human UCP2, and human mitochondrial oxoglutarate carrier were individually expressed in Saccharomyces cerevisiae and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak. Only UCP1 showed a strong (3.6-fold increase of the ratio of mitochondrial state 4 respiration rate to FCCP-stimulated fully uncoupled respiration rate) and GDP-inhibitable uncoupling activity, while the uncoupling activities of both UCP2 and lamprey UCP were relatively weak (1.5-fold and 1.4-fold, respectively) and GDP-insensitive. The oxoglutarate carrier had no effect on the studied parameters. In conclusion, the lamprey UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles UCP2, but not UCP1.  相似文献   

5.
6.
Molecular studies of the uncoupling protein   总被引:6,自引:0,他引:6  
  相似文献   

7.
The rat liver mitochondrial phosphate transporter contains a 44-amino acid presequence. The role of this presequence is not clear since the ADP/ATP carrier and the brown fat uncoupling protein, related members of a family of inner membrane anion transporters, lack a presequence and contain targeting information within the mature protein. Here, we present evidence that the rat liver mitochondrial phosphate transporter can be synthesized in vitro, imported into mitochondria, and processed to a protein of Mr 33,000. Import requires the membrane potential and external nucleotide triphosphate. The presequence inserts into the outer mitochondrial membrane, and import proceeds via a process similar to other proteins destined for the inner membrane or matrix. A mutant phosphate transporter lacking 35 amino acids at the NH2 terminus of the presequence has little capacity for mitochondrial import. The rat liver phosphate transporter is also imported and processed by rat kidney mitochondria and by mitochondria from the yeast Saccharomyces cerevisiae. A site-directed mutation of the N-ethyl-maleimide reactive cysteine 41 does not affect import or processing. The results presented show that optimal import of the mitochondrial phosphate transporter, unlike the ADP/ATP carrier and the brown fat uncoupling protein, is dependent on a presequence. As these carriers are believed to have evolved from a single gene, it seems likely that the H+/Pi carrier, known to be present in prokaryotes, appeared first and that subsequent evolutionary events leading to the other anion carriers eliminated the presequence.  相似文献   

8.
Antibody to uncoupling protein (UCP) purified from rat brown adipose tissue (BAT) was raised in rabbits and an enzyme linked immunosorbent assay was developed. The antiserum did not cross-react with other mitochondrial proteins from BAT and from other tissues but cross-reacted with UCP from hamster, guinea pig and mouse. The assay is capable of detecting 5 ng of UCP. Using this assay and a crude mitochondrial preparation, UCP content of BAT was shown to increase during cold adaptation.  相似文献   

9.
1. Ewes were injected with purified 32,000-Mr uncoupling protein from mitochondria of brown adipose tissue of cold-adapted rats in order to raise antibodies. 2. The existence of antibodies in the plasma of ewes and the cross-reactivity of plasmas were demonstrated and studied by 125I-labelled antigen-antibody reaction, double immunodiffusion, the inhibition of GDP binding to the 32,000 Mr protein and by immunohistochemistry. 3. The antibodies raised against the homogeneous protein yielded a single immunoprecipitation band with detergent-solubilized mitochondrial membranes of brown adipose tissue from rat, hamster, guinea-pig, rabbit and with the purified uncoupling protein of these animals. No immunoprecipitation was obtained with the protein purified from brown adipose tissue of term lamb foetus. 4. The GDP-binding activity of the uncoupling protein (isolated or in solubilized membranes) was largely inhibited by the antiserum. 5. The anti-(rat uncoupling protein) could not cross-react with solubilized membranes from liver or muscle, nor with the purified beef heart or rat liver ADP/ATP translocator.  相似文献   

10.
Brown adipose tissue of developing hamster was characterized by western blotting, enzyme activity measurements and immunoelectron microscopy. During the first postnatal week the tissue contained significant amounts of differentiating mitochondria and comparable quantities of active cytochrome oxidase and ATP synthase. The uncoupling protein appeared on the 7/8th day and its specific content increased 80-times between day 8 and day 17. In parallel, the specific content and activity of cytochrome oxidase increased 3-times but ATP synthase decreased 2-times. The total content of uncoupling protein and of cytochrome oxidase in interscapular brown adipose tissue increased 360- and 11-times, respectively. Analysis of isolated mitochondria showed that the observed differences result mainly from changes of the enzymic equipment of the mitochondrial membrane. During the same interval, propylthiouracil-insensitive "type II' thyroxine 5'-deiodinase activity in brown adipose tissue increased 10-times. It was concluded that the thermogenic function of the hamster brown adipose tissue develops after the first postnatal week due to highly differentiated synthesis of mitochondrial proteins leading to replacement of preexisting, uncoupling protein-lacking nonthermogenic mitochondria by thermogenic ones, similarly as shown in brown adipose tissue of the embryonic mouse and rat (Houst?k, J., et al. (1988) Biochim. Biophys. Acta 935, 19-25).  相似文献   

11.
12.
13.
We report here the identification and characterization of mouse GTPBP3 encoding a mitochondrial GTPase. A full-length GTPBP3 cDNA has been isolated and the genomic organization of GTPBP3 has been elucidated. The mouse GTPBP3 gene containing 9 exons encodes a 486 residue protein with a strong homology to the GTPBP3-like proteins of bacteria, yeast, and other homologs, related to tRNA modification. The mouse GTPBP3 is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, and brain. Surprisingly, this gene, unlike its human homolog, exhibited a low expression in skeletal muscle. Furthermore, immunofluorescence analysis of NIH3T3 cells expressing GTPBP3-GFP fusion protein demonstrated that the mouse Gtpbp3 localizes in mitochondrion. These observations suggest that the mouse Gtpbp3 is an evolutionarily conserved mitochondrial GTP-binding protein involved in the tRNA modification. Thus, it may modulate the translational efficiency and accuracy of codon-anticodon base pairings on the decoding region of mitochondrial ribosomes.  相似文献   

14.
Recent studies report mitochondrial carrier homolog 2 (MTCH2) as a novel and uncharacterized protein that acts as a receptor-like protein for the truncated BH3-interacting domain death agonist (tBID) protein in the outer membrane of mitochondria. These studies, using mouse embryonic stem cells and fibroblasts as well as mice with a conditional knockout of MTCH2 in the liver, showed that deletion of MTCH2 hindered recruitment of tBID to the mitochondria with subsequent reductions in the activation of pro-apoptotic proteins, mitochondrial outer membrane permeabilization and apoptosis. Sequence analysis shows that MTCH2 is present in all examined multicellular Metazoa as well as unicellular Choanoflagellata, and is a highly derived member of the mitochondrial carrier family. Mitochondrial carriers are monomeric transport proteins that are usually found in the inner mitochondrial membrane, where they exchange small substrates between the mitochondrial matrix and intermembrane space. There are extensive differences between the protein sequences of MTCH2 and other mitochondrial carriers that may explain the ability of MTCH2 to associate with tBID and thus its role in apoptosis. We review the experimental evidence for the role of MTCH2 in apoptosis and suggest that the original transport function of the ancestral MTCH2 mitochondrial carrier has been co-opted by the apoptotic machinery to provide a receptor and signaling mechanism.  相似文献   

15.
16.
Metabolic reprogramming is a hallmark of many cancer types, including hepatocellular carcinoma (HCC). Identifying the critical players in this process might be crucial for the generation of novel and effective anti-neoplastic therapies. In the present investigation, we determined the importance of carbohydrate responsive element binding protein (ChREBP), a central player in the regulation of lipid and glucose metabolism in the liver, on the development of HCC in in vitro and in vivo models. We found that genetic deletion of ChREBP (that will be referred to as ChREBPKO mice) strongly delays or impairs hepatocarcinogenesis driven by AKT or AKT/c-Met overexpression in mice, respectively. In contrast, HCC development was found to be completely unaffected by ChREBP depletion in mice co-expressing AKT and N-Ras protooncogenes. In mouse and human HCC cell lines, suppression of ChREBP via specific small interfering RNAs (siRNAs) resulted in decreased proliferation and induction of apoptosis. Of note, these cellular events were strongly augmented by concomitant inhibition of the mitogen-activated protein kinase (MAPK) pathway. The present data indicate that ChREBP activity might be required or dispensable for HCC growth, depending on the oncogenes involved. In particular, the activation of Ras/MAPK signaling might represent a possible mechanism of resistance to ChREBP depletion in this tumor type. Additional studies are needed to unravel the molecular mechanisms rendering HCC cells insensitive to ChREBP suppression.  相似文献   

17.
Peptide maps were generated of the CNBr-digested mitochondrial phosphate-transport protein and ADP/ATP carrier from bovine and rat heart, rat liver and blowfly flight muscle. Total mitochondrial proteins from the same sources plus pig heart were separated by SDS-polyacrylamide gel electrophoresis. The peptide maps and the total mitochondrial proteins were electroblotted onto nitrocellulose membranes and reacted with rabbit antisera raised against the purified bovine heart phosphate-transport protein and the ADP/ATP carrier. On the basis of antibody specificity, mobility in SDS-polyacrylamide gel electrophoresis, and peptide maps the following was concluded. Phosphate-transport protein alpha and phosphate-transport protein beta (pig and bovine heart) react equally with the first and also with the second of two independent phosphate-transport protein-antisera. Tissue-specific structural domains exist for both the phosphate-transport protein and the ADP/ATP carrier, i.e., one phosphate-transport protein-antiserum reacts with the phosphate-transport protein from all assayed sources, the other only with the cardiac phosphate-transport protein. These differences may reflect tissue-specific regulation of phosphate and adenine nucleotide transport. Homologies among the different species are found for the phosphate transport protein and the ADP/ATP carrier, except for the flight muscle ADP/ATP carrier. These conserved structural domains of the phosphate-transport protein may relate directly to catalytic activity. Alkylation of the purified phosphate-transport proteins and the ADP/ATP carriers by the transport inhibitor N-ethylmaleimide affects electrophoretic mobilities but not the antibody binding. Neither of the two phosphate-transport protein-antisera nor the ADP/ATP-carrier antiserum react with both phosphate transport protein and ADP/ATP carrier, even though these two proteins possess similarities in primary structure and function. Possible mechanisms for generating tissue-specific structural differences in the proteins are discussed.  相似文献   

18.
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 μM) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells.  相似文献   

19.
Here we reported a novel human secreted protein named as hZG16, with a Jacalin domain. Evolution analysis through comparing with the orthologs of other organisms suggested that ZG16 is a conserved gene under the purifying selection (d(N)/d(s)<1) in the evolution. Interestingly, Northern and dot blot analyses showed that hZG16 were highly expressed in adult liver, not in fetal liver, and moderately in gut, including jejunum, ileum, and colon, in which the tissue expression pattern of hZG16 was significantly dissimilar to that of mouse and rat orthologs that were uniquely expressed in spleen and pancreas, respectively. Unexpectedly, hZG16 was markedly down-regulated in hepatocellular carcinoma (HCC) as indicated by RT-PCR, Northern blot analysis and immunohistochemistry staining. However, the tunicamicin treatment and pulse-chase experiments showed that hZG16 protein had a similar molecular function with rZG16 that take part in glycoproteins' secretion in a bus mode.  相似文献   

20.
Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨ(m)) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨ(m) was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号