共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on
yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and major role in industrial bioethanol production, has several
advantages due to its high ethanol productivity, as well as its high ethanol and inhibitor tolerance. However, this yeast
cannot ferment xylose, which is the dominant pentose sugar in hydrolysates of lignocellulosic biomass. A number of different
strategies have been applied to engineer yeasts capable of efficiently producing ethanol from xylose, including the introduction
of initial xylose metabolism and xylose transport, changing the intracellular redox balance, and overexpression of xylulokinase
and pentose phosphate pathways. In this review, recent progress with regard to these studies is discussed, focusing particularly
on xylose-fermenting strains of S. cerevisiae. Recent studies using several promising approaches such as host strain selection and adaptation to obtain further improved
xylose-utilizing S. cerevisiae are also addressed. 相似文献
2.
A co-culture platform for bioethanol production from brown macroalgae was developed, consisting of two types of engineered Saccharomyces cerevisiae strains; alginate- and mannitol-assimilating yeast (AM1), and cellulase-displaying yeast (CDY). When the 5% (w/v) brown macroalgae Ecklonia kurome was used as the sole carbon source for this system, 2.1 g/L of ethanol was produced, along with simultaneous consumption of alginate, mannitol, and glucans. 相似文献
3.
Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1delta nde1delta nde2delta gut2delta quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h(-1) at 100 g of glucose. liter(-1)). In aerated batch cultures grown on 400 g of glucose. liter(-1), this engineered S. cerevisiae strain produced over 200 g of glycerol. liter(-1), corresponding to a molar yield of glycerol on glucose close to unity. 相似文献
4.
采用基因工程方法对酿酒酵母进行代谢改造,使酵母产生乳酸代谢途径。将来源于L.mesenteroides和E.coli的D-乳酸脱氢酶基因,分别插入带有G418抗性的酵母穿梭质粒p YX212-kan MX上,电转化酵母,得到2株生产D-乳酸的酿酒酵母重组菌S.cerevisiae WE1510和S.cerevisiae WB1186。进一步摇瓶发酵试验表明:重组菌S.cerevisiae WB1186在YEPD培养基、20 g/L糖、p H 5的条件下生长条件最好,并具有更好的产乳酸能力。经3 L发酵罐条件下验证,S.cerevisiae WB1186分批发酵96 h,最终乳酸积累量达到18.0 g/L;发酵条件为培养基YEPD,接种量10%,溶解氧(DO)30%,转速150 r/min,初始葡萄糖质量浓度10 g/L,控制pH 5.0,通气量3 L/min,OD600最大值转为厌氧发酵。 相似文献
5.
介绍一种经过长期诱导、驯化作用来选育耐性菌株的方法。通过固定化细胞的间歇补料培养方式和长期诱导、驯化后,筛选出8株具有较高苯甲醛耐受性的酿酒酵母菌株,其中菌株Sbht-35-23对苯甲醛的耐受性达到0.9%,并保持较高的稳定活性。采用这些具有较高耐性的酿酒酵母菌株生物合成L-苯基乙酰基甲醇(L-PAC),将有利于提高转化率。 相似文献
7.
To improve wine taste and flavor stability, a novel indigenous strain of Saccharomyces cerevisiae with enhanced glycerol and glutathione (GSH) production for winemaking was constructed. ALD6 encoding an aldehyde dehydrogenases of the indigenous yeast was replaced by a GPD1 and CUP1 gene cassette, which are responsible for NAD-dependent glycerol-3-phosphatase dehydrogenase and copper resistance, respectively. Furthermore, the α-acetohydroxyacid synthase gene ILV2 of the indigenous yeast was disrupted by integration of the GSH1 gene which encodes γ-glutamylcysteine synthetase and the CUP1 gene cassette. The fermentation capacity of the recombinant was similar to that of the wild-type strain, with an increase of 21 and 19?% in glycerol and GSH production. No heterologous DNA was harbored in the recombinant in this study. 相似文献
8.
Saccharomyces cerevisiae is a popular organism for metabolic engineering; however, studies aiming at over-production of bio-replacement precursors for the chemical industry often fail to overcome proof-of-concept stage. When intending to show real industrial attractiveness, the challenge is twofold: formation of the target compound must be increased, while minimizing the formation of side and by-products to maximize titer, rate and yield. To tackle these, the metabolism of the organism, as well as the parameters of the process, need to be optimized. Addressing both we show that S. cerevisiae is well-suited for over-production of aromatic compounds, which are valuable in chemical industry and are particularly useful in space technology. Specifically, a strain engineered to accumulate chorismate was optimized for formation of para-hydroxybenzoic acid. Then a fed-batch bioreactor process was developed, which delivered a final titer of 2.9 g/L, a maximum rate of 18.625 mgpHBA/(gCDW × h) and carbon-yields of up to 3.1 mgpHBA/gglucose. 相似文献
9.
BackgroundSpecific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background. ResultsThrough genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-κB reporter cells expressing Toll like receptor (TLR)-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-α after stimulation with the WTA mutants as compared to the wild-type. ConclusionsThe study presented here correlates structural differences in WTA to their functional characteristics, thereby providing important information aiding to improve our understanding of molecular host-microbe interactions and probiotic functionality. 相似文献
11.
Resveratrol is a polyphenolic compound with diverse beneficial effects on human health. Red wine is the major dietary source of resveratrol but the amount that people can obtain from wines is limited. To increase the resveratrol production in wines, two expression vectors carrying 4‐coumarate: coenzyme A ligase gene (4CL) from Arabidopsis thaliana and resveratrol synthase gene (RS) from Vitis vinifera were transformed into industrial wine strain Saccharomyces cerevisiae EC1118. When cultured with 1 mM p‐coumaric acid, the engineered strains grown with and without the addition of antibiotics produced 8.249 and 3.317 mg/L of trans‐resveratrol in the culture broth, respectively. Resveratrol content of the wine fermented with engineered strains was twice higher than that of the control, indicating that our engineered strains could increase the production of resveratrol during wine fermentation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:650–655, 2015 相似文献
12.
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes. 相似文献
13.
Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constraints by (i) maintaining flexibility at fructose-1,6-bisphosphatase and triosephosphate isomerase, while (ii) eliminating reactions that compete with glycerol formation for cytosolic NADH and (iii) enabling oxidative catabolism within the mitochondrial matrix. In aerobic, glucose-grown batch cultures a S. cerevisiae strain, in which the pyruvate decarboxylases the external NADH dehydrogenases and the respiratory chain-linked glycerol-3-phosphate dehydrogenase were deleted for this purpose, produced glycerol at a yield of 0.90 mol.(molglucose)(-1). In aerobic glucose-limited chemostat cultures, the glycerol yield was ca. 25% lower, suggesting the involvement of an alternative glucose-sensitive mechanism for oxidation of cytosolic NADH. Nevertheless, in vivo generation of additional cytosolic NADH by co-feeding of formate to aerobic, glucose-limited chemostat cultures increased the glycerol yield on glucose to 1.08 mol mol(-1). To our knowledge, this is the highest glycerol yield reported for S. cerevisiae. 相似文献
16.
Recently, butanols (1-butanol, 2-butanol and iso-butanol) have generated attention as alternative gasoline additives. Butanols have several properties favorable in comparison to ethanol, and strong interest therefore exists in the reconstruction of the 1-butanol pathway in commonly used industrial microorganisms. In the present study, the biosynthetic pathway for 1-butanol production was reconstructed in the yeast Saccharomyces cerevisiae. In addition to introducing heterologous enzymes for butanol production, we engineered yeast to have increased flux toward cytosolic acetyl-CoA, the precursor metabolite for 1-butanol biosynthesis. This was done through introduction of a plasmid-containing genes for alcohol dehydrogenase ( ADH2), acetaldehyde dehydrogenase ( ALD6), acetyl-CoA synthetase (ACS), and acetyl-CoA acetyltransferase ( ERG10), as well as the use of strains containing deletions in the malate synthase ( MLS1) or citrate synthase ( CIT2) genes. Our results show a trend to increased butanol production in strains engineered for increased cytosolic acetyl-CoA levels, with the best-producing strains having maximal butanol titers of 16.3 mg/l. This represents a 6.5-fold improvement in butanol titers compared to previous values reported for yeast and demonstrates the importance of an improved cytosolic acetyl-CoA supply for heterologous butanol production by this organism. 相似文献
18.
The non-ethylene producing yeast, Saccharomyces cerevisiae, was transformed into an ethylene producer by introducing the ethylene forming enzyme from the plant pathogenic bacterium Pseudomonas syringae. Cultivation of the metabolically engineered strain was performed in well-controlled bioreactors as aerobic batch cultures with an on-line monitoring of ethylene production. The highest productivity was obtained during the respiro-fermentative growth on glucose but there was also a significant rate of formation during the subsequent phase of ethanol respiration. Furthermore, investigations were performed whether substitution of the original nitrogen source, NH(4)(+), for glutamate could improve productivity and yield of ethylene even more. The rationale being that one of the substrates for the enzyme is 2-oxoglutarate and this compound can be formed from glutamate in a single reaction. Indeed, there was a substantial improvement in the rate of production and the final yield of ethylene was almost three times higher when NH(4)(+) was replaced by glutamate. 相似文献
19.
A hundred strains of Saccharomyces cerevisiae were examined for the ability to produce higher alcohols. In the strains tested the production of higher alcohols was found to be an individual strain characteristic and, as such, was statistically significant. The characteristics of the strains used (flocculation ability, foaming ability, killer character, and non-H2S production) were found to be uncorrelated to isobutanol and isoamyl alcohol production, whereas the production of high levels of n-propanol was found to be related to inability to produce H2S. This, in turn, suggests a link to methionine biosynthesis. 相似文献
20.
The recombinant xylose fermenting strain Saccharomyces cerevisiae TMB3001 can grow on xylose, but the xylose utilisation rate is low. One important reason for the inefficient fermentation of xylose to ethanol is believed to be the imbalance of redox co-factors. In the present study, a metabolic flux model was constructed for two recombinant S. cerevisiae strains: TMB3001 and CPB.CR4 which in addition to xylose metabolism have a modulated redox metabolism, i.e. ammonia assimilation was shifted from being NADPH to NADH dependent by deletion of gdh1 and over-expression of GDH2. The intracellular fluxes were estimated for both strains in anaerobic continuous cultivations when the growth limiting feed consisted of glucose (2.5 g L-1) and xylose (13 g L-1). The metabolic network analysis with 13C labelled glucose showed that there was a shift in the specific xylose reductase activity towards use of NADH as co-factor rather than NADPH. This shift is beneficial for solving the redox imbalance and it can therefore partly explain the 25% increase in the ethanol yield observed for CPB.CR4. Furthermore, the analysis indicated that the glyoxylate cycle was activated in CPB.CR4. 相似文献
|