首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of the five tryptophan biosynthetic enzymes of Neurospora crassa was shown to be derepressed in histidine-starved cells. This histidine-mediated derepression was not due to a lowered intracellular concentration of tryptophan in these cells. Furthermore, histidine-mediated derepression of tryptophan enzymes was found to be coordinate and not subject to reversal by tryptophan of either exogenous or biosynthetic origin. The synthesis of tryptophan enzymes also was found to be coordinate in cells which were not histidine-starved. Although histidine is clearly involved in regulating the synthesis of tryptophan enzymes, it did not prevent either tryptophan-mediated derepression of tryptophan enzymes or indole-3-glycerol phosphate-mediated derepression of tryptophan synthetase.  相似文献   

2.
Activities of five enzymes of the pyrimidine biosynthetic pathway and one enzyme involved in arginine synthesis were measured during batch culture of Salmonella typhimurium. Aspartate carbamoyltransferase, dihydroorotase, and the arginine pathway enzyme, ornithine carbamoyltransferase, remained constant during the growth cycle but showed a sharp decrease in activity after entering the stationary phase. Dihydroorotate dehydrogenase, orotate phosphoribosyltransferase and orotidine-5'-monophosphate (OMP) decarboxylase showed peaks of activity corresponding to the mid-point of the exponential phase of growth while remaining comparatively stable in the stationary phase. Derepression studies carried out by starving individual pyrimidine (Pyr-) deletion mutants for uracil showed that the extent of derepression obtained for aspartate carbamoyltransferase, dihydroorotase and dihydroorotate dehydrogenase depended on the location of the pyr gene mutation. Orotate phosphoribosyltransferase and OMP decarboxylase derepression levels were independent of the location of the pyr mutation. Aspartate carbamoyltransferase showed the greatest degree of derepression of the six enzymes studied, with pyrA strains (blocked in the first step of the pathway) showing about twice as much derepression as pyrF strains (blocked in the sixth step of the pathway). A study of the kinetics of repression on derepressed levels of the pyrimidine enzymes produced data that were compatible with dilution of specific activity by cell division when repressive amounts of uracil were added to the derepression medium.  相似文献   

3.
In Neurospora crassa, the starvation of tryptophan mutants for tryptophan resulted in the derepression of tryptophan, histidine, and arginine biosynthetic enzymes. This tryptophan-mediated derepression of histidine and arginine biosynthetic enzymes occurred despite the fact that the tryptophan-starved cells had a higher intracellular concentration of histidine and arginine than did nonstarved cells.  相似文献   

4.
The leucine analogue 5',5',5',-trifluoroleucine (fluoroleucine) replaced leucine for repression of the isoleucine-valine biosynthetic enzymes in Salmonella typhimurium. In contrast, the analogue had no effect on derepression of the leucine biosynthetic enzymes in leucine auxotrophs grown on limiting amounts of leucine. The effect of fluoroleucine on repression appeared to be specific for leucine since derepression of the isoleucine-valine enzymes due to an isoleucine or valine limitation was not affected by the analogue. The prevention of derepression by fluoroleucine was probably due to repression and not to the formation of false proteins, since the analogue had no effect on the derepression of a number of enzymes unrelated to the isoleucine-valine pathway. Fluoroleucine was able to attach to leucine transfer ribonucleic acid (tRNA) as evidenced by the ability of the analogue to protect about 70% of leucine tRNA from oxidation by periodate. We propose that the differential effects of fluoroleucine on repression are due to differences in the ability of the analogue to bind to the various species of leucine tRNA.  相似文献   

5.
In Neurospora crassa, histidine starvation of histidine mutants resulted in derepression of histidine, tryptophan, and arginine biosynthetic enzymes. The same tripartite derepression occurred in wild-type strain 74A when it was grown in medium supplemented with 3-amino-1,2,4-triazole, an inhibitor of histidine biosynthesis. Histidine-mediated derepression of tryptophan and arginine biosynthetic enzymes was not due to a lowered intracellular concentration of tryptophan or arginine, respectively. A discussion of possible mechanisms and of similar studies in prokaryotic and eukaryotic organisms is presented.  相似文献   

6.
In anaerobically glucose-grown yeast isocitrate lyase (EC 4.1.3.1.), malate synthase (EC 4.1.3.2.) and malate dehydrogenase (EC 1.1.1.37.) are repressed by glucose. 24 h cultures still contain 0.3–0.4% glucose in the medium, which is enough to completely repress these activities. Aeration of these cells, in buffer containing acetate, initiates the formation of the three enzymes. Within 16 h, the specific activities of these enzymes increase about 140, 120 and 70-fold, respectively. Glucose-6-phosphate dehydrogenase activity was not altered. When the yeast was grown anaerobically, but with a supplement of an unsaturated fatty acid in the medium, synthesis of the three enzymes was much faster and the specific activities after 16 h of derepression were considerably higher. A relationship exists between the number of double bonds in the unsaturated fatty acid molecule and its capability to stimulate enzyme synthesis: linolenic acid is more effective than linoleic acid, which, in turn, is much more effective than oleic acid. Increasing periods of aeration with glucose of anaerobically grown cells prior to derepression results in an increasing stimulation of enzyme synthesis on subsequent derepression. Anaerobic incubation of yeast in the presence of an unsaturated fatty acid in advance to derepression also increased the velocity of enzyme formation. It is suggested that during the aeration period with glucose and during anaerobic incubation with an unsaturated fatty acid a more active protein synthesizing apparatus was formed.  相似文献   

7.
Enzyme derepression and feedback inhibition of the first enzyme are the regulatory mechanisms demonstrated for the tryptophan pathway in Saccharomyces cerevisiae. The relative contributions of the two mechanisms to the control of the flux through the pathway in vivo were analyzed by (i) measuring feedback inhibition of anthranilate synthase in vivo, (ii) determining the effect of regulatory mutations on the level of the tryptophan pool and the flux through the pathway, and (iii) varying the gene dose of individual enzymes of the pathway at the tetraploid level. We conclude that the flux through the pathway is adjusted to the rate of protein synthesis by means of feedback inhibition of the first enzyme by the end product, tryptophan. The synthesis of the tryptophan enzymes could not be repressed below a basal level by tryptophan supplementation of the media. The enzymes are present in excess. Increasing or lowering the concentration of individual enzymes had no noticeable influencing on the overall flux to tryptophan. The uninhibited capacity of the pathway could be observed both upon relieving feedback inhibition by tryptophan limitation and in feedback-insensitive mutants. It exceeded the rate of consumption of the amino acid on minimal medium by a factor of three. Tryptophan limitation caused derepression of four of the five tryptophan enzymes and, as a consequence, led to a further increase in the capacity of the pathway. However, because of the large reserve capacity of the "repressed" pathway, tryptophan limitation could not be imposed on wild-type cells without resorting to the use of analogs. Our results, therefore, suggest that derepression does not serve as an instrument for the specific regulation of the flux through the tryptophan pathway.  相似文献   

8.
Enzymes of the Isoleucine-Valine Pathway in Acinetobacter   总被引:2,自引:2,他引:0       下载免费PDF全文
Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase.  相似文献   

9.
E Boy  F Reinisch  C Richaud  J C Patte 《Biochimie》1976,58(1-2):213-218
A mutant of lysyl-tRNA synthetase has been isolated in Escherichia coli K12. With this strain the Kmapp for lysine is 25 fold higher than with the parental strain. The percentage of charged tRNAlys in vivo is only 7 per cent (as against 65 per cent with HFR H). Under these conditions no derepression of synthesis is observed for three lysine biosynthetic enzymes (AK III, ASA-dehydrogenase, DAP-decarboxylase) ; a partial derepression is obtained in the case of the dhdp-reductase. Thus lysyl-tRNA does not act as the only corepressor molecule in the lysine regulon.  相似文献   

10.
l-Threonine deaminase (l-threonine dehydratase [deaminating], EC 4.2.2.16) has been shown to be involved in the regulation of three of the enzymes of isoleucine-valine biosynthesis in yeast. Mutations affecting the affinity of the enzyme for isoleucine also affected the repression of acetohydroxyacid synthase, dihydroxyacid dehydrase, and reductoisomerase. The data indicate that isoleucine must be bound for effective repression of these enzymes to take place. In a strain with a nonsense mutation midway in liv 1, the gene for threonine deaminase, starvation for isoleucine or valine did not lead to derepression of the three enzymes; starvation for leucine did. The effect of the nonsense mutation is recessive; it is tentatively concluded, therefore, that intact threonine deaminase is required for derepression by two of the effectors for multivalent repression, but not by the third. A model is presented which proposes that a regulatory species of leu tRNA(leu) is the key intermediate for repression and that threonine deaminase is a positive element, regulating the available pool of charged leu tRNA by binding it.  相似文献   

11.
Methionine starvation of methionine auxotrophs in the presence of excess branched-chain amino acids results in a partial derepression of the isoleucine and valine enzymes. Reversed-phase chromatography indicated that isoleucine, valine and leucine tRNA were altered during methionine starvation. In addition, the total tRNA isolated from cells under these conditions were undermethylated. The observed derepression may be caused by the inability of methyl-deficient tRNA's to participate adequately in normal regulatory functions.  相似文献   

12.
Summary During derepression of threonine deaminase and acetolactate synthetase due to valine deficiency—initiated by -aminobutyric acid limited growth of E. coli K12 or by limited valine supply to an ilv/leu auxotroph of E. coli K12—no alteration of the specific activity of isoleucyl-tRNA-synthetase occurs. Leucine limited growth of the auxotroph, leading to an even higher derepression of the isoleucine biosynthetic enzymes, also does not affect the specific activity of isoleucyl-tRNA-synthetase. However, under growth conditions where the same degree of derepression of threonine deaminase is due to isoleucine deficiency, as in E. coli K12B or two valine resistant mutants thereof grown in the presence of valine, or in the auxotroph during growth-limiting isoleucine supply, a specific two- to three-fold derepression of the isoleucyl-tRNA-synthetase takes place. But there is no strict correlation between the degree of derepression of threonine deaminase due to isoleucine deficiency and the degree of derepression of isoleucyl-tRNA-synthetase, as especially shown in case of the valine resistant mutant Val R4 and Val R5 grown in the presence of valine.These results demonstrate that the rate of formation of isoleucyl-tRNA-synthetase and of threonine deaminase are not regulated by the same molecular devices and that a certain degree of isoleucine deficiency is a prerequisite for a derepression of isoleucyl-tRNA-synthetase.  相似文献   

13.
The abilities of 14 tryptophan analogs to repress the tryptophan (trp) operon have been studied in Escherichia coli cells derepressed by incubation with 0.25 mM indole-3-propionic acid (IPA). trp operon expression was monitored by measuring the specific activities of anthranilate synthase (EC 4.1.3.27) and the tryptophan synthase (EC 4.2.1.20) beta subunit. Analogs characterized by modification or removal of the alpha-amino group or the alpha-carboxyl group did not repress the trp operon. The only analogs among this group that appeared to interact with the trp aporepressor were IPA, which derepressed the trp operon, and d-tryptophan. Analogs with modifications of the indole ring repressed the trp operon to various degrees. 7-Methyl-tryptophan inhibited anthranilate synthase activity and consequently derepressed the trp operon. Additionally, 7-methyltryptophan prevented IPA-mediated derepression but, unlike tryptophan, did so in a non-coordinate manner, with the later enzymes of the operon being relatively more repressed than the early enzymes. The effect of 7-methyltryptophan on IPA-mediated derepression was likely not due to the interaction of IPA with the allosteric site of anthranilate synthase, even though feedback-resistant mutants of anthranilate synthase were partially resistant to derepression by IPA. The effect of 7-methyltryptophan on derepression by IPA was probably due to the effect of the analog-aporepressor complex on trp operon expression.  相似文献   

14.
Regulation of the biosynthesis of four of the five enzymes of the isoleucine-valine pathway was studied in Saccharomyces cerevisiae. A method is described for limiting the growth of a leucine auxotroph by using valine as a competitor for the permease. Limitation for isoleucine and valine was accomplished by the use of peptides containing these amino acids conjugated with glycine as nutritional supplements for auxotrophs. The enzymes were repressed on synthetic medium containing isoleucine, valine, and leucine, as well as on broth supplemented with these amino acids. Limitation for any of the three branched-chain amino acids led to derepression of the isoleucine-valine biosynthetic pathway. Maximal derepression ranged from 3-fold for threonine deaminase to approximately 10-fold for acetohydroxyacid synthase. (Two of the enzymes, acetohydroxyacid synthase and dihydroxyacid dehydrase, may be controlled by a mechanism different from that regulating threonine deaminase.) Possible molecular mechanisms for multivalent repression are discussed.  相似文献   

15.
Strains of Bacillus subtilis that were resistant to repression of pyrimidine nucleotide biosynthetic enzymes were selected by isolating spontaneous uracil-tolerant derivatives of a uracil-sensitive strain, which lacks arginine-repressible carbamyl phosphate synthetase. The relative content of all six enzymes of uridylic acid biosynthesis de novo in these strains was in a constant ratio over a 10-fold range of derepression, which indicates that synthesis of these enzymes is coordinately regulated.  相似文献   

16.
17.
The arginase and the ornithine transaminase of baker's yeast are induced byl-arginine. Both enzymes have been shown to be repressed by nitrogen compounds. This is evidenced primarily by the decrease in specific enzyme activities caused by the addition of readily assimilable nitrogen compounds to a yeast culture with arginine, secondly by the derepression of both enzymes during nitrogen starvation of the yeast grown in various arginine-free media. This derepression equals both in rate and in amount the enzyme synthesis during the adaptation of the yeast to a medium withl-arginine as the sole nitrogen source. It is inhibited by various assimilable and non-assimilable amino acids. The derepression is the result of the nitrogen deficiency itself, since during the starvation of the yeast for sulphate, phosphate or magnesium, neither of the two enzymes is derepressed, and since it is independent of the nature of the carbon source in the nitrogen starvation medium, provided the latter is immediately assimilable.The enzymes are not subject to catabolite repression by glucose metabolites.It is concluded that the synthesis of arginase and ornithine transaminase in yeast is regulated by induction and repression. Arginine induces the enzymes; they are repressed by nitrogen compounds, probably in cooperation with one or more vitamins.Thanks are due to Professor E. G. Mulder for his frequent encouragement, to the Heineken's Brouwerij, Rotterdam and to the Landbouwhogeschoolfonds for research grants, and to Miss H. P. M. Klinkers, to Mr. P. J. Buysman and to Mr. G. J. K. Pesch for their skilful technical assistance.  相似文献   

18.
3-Methylanthranilic acid (3MA) inhibits growth and causes derepression of the tryptophan biosynthetic enzymes in wild-type strains of Escherichia coli. Previous reports attributed this effect to an inhibition of the conversion of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate to indole-3-glycerol phosphate and a consequent reduction in the concentration of endogenous tryptophan. Our studies have shown that 3MA-resistant mutants linked to the tryptophan operon have a feedback-resistant anthranilate synthetase; mutants with an altered indole-3-glycerol phosphate synthetase were not found. 3MA or 7-methylindole can be metabolized to 7-methyltryptophan, and 3MA, 7-methylindole, and 7-methyltryptophan lead to derepression of the tryptophan operon. Furthermore, 3MA-resistant mutants are also resistant to 7-methylindole derepression. These results strongly suggest that the primary cause of derepression by 3MA is through its conversion to 7-methyltryptophan, which can inhibit anthranilate synthetase, thereby decreasing the concentration of endogenous tryptophan. Unlike 5- or 6-methyltryptophan, 7-methyltryptophan does not appear to function as an active corepressor.  相似文献   

19.
The properties of mutants resistant to 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)-isoalloxazine (MTRY) were studied. The mutants were isolated from a genetic line of Pichia guilliermondii. Several of them were riboflavin overproducers and had derepressed flavinogenesis enzymes (GTP cyclohydrolase, 6.7-dimethyl-8-ribityllumazine synthase) in iron-rich medium. An additional derepression of these enzymes as well as derepression of riboflavin synthase occurred in iron-deficient medium. The characters "riboflavin oversynthesis" and "derepression of enzymes" were recessive in mutants of the 1st class, or dominant in those of the 2nd class. The hybrids of analogue-resistant strains of the 1st class with previously isolated regulatory mutants ribR (novel designation rib80) possessed the wild-type phenotype and were only capable of riboflavin overproduction under iron deficiency. Complementation analysis of the MTRY-resistant mutants showed that vitamin B2 oversynthesis and enzymes' derepression in these mutants are caused by impairment of a novel regulatory gene, RIB81. Thus, riboflavin biosynthesis in P. guilliermondii yeast is regulated at least by two genes of the negative action: RIB80 and RIB81. The meiotic segregants which contained rib80 and rib81 mutations did not show additivity in the action of the above regulatory genes. The hybrids of rib81 mutants with natural nonflavinogenic strain P. guilliermondii NF1453-1 were not capable of riboflavin oversythesis in the iron-rich medium. Apparently, the strain NF1453-1 contains an unaltered gene RIB81.  相似文献   

20.
The derepression of delta-aminolevulinate synthetase in yeast   总被引:4,自引:0,他引:4  
A simple and reproducible paradigm for the study of derepression of respiratory enzymes in yeast in the absence of growth is described. With it we have shown that δ-aminolevulinate synthetase undergoes an unusual cyclical pattern centering at t = 5 h after transfer to a derepression medium and extending for ~2.5 h in both directions. It can be explained by the induction, followed by the decay, of a novel activity, probably synthesized in the cytosol but also requiring the participation of (a) mitochondrially synthesized component(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号