首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-1 induces release of NO and PGE(2) and production of matrix degrading enzymes in chondrocytes. In osteoarthritis (OA), IL-1 continually, or episodically, acts on chondrocytes in a paracrine and autocrine manner. Human chondrocytes in chondron pellet culture were treated chronically (up to 14 days) with IL-1beta. Chondrons from OA articular cartilage were cultured for 3 weeks before treatment with IL-1beta (0.05-10 ng/ml) for an additional 2 weeks. Spontaneous release of NO and IL-1beta declined over the pretreatment period. In response to IL-1beta (0.1 ng/ml), NO and PGE(2) release was maximal on Day 2 or 3 and then declined to near basal level by Day 14. Synthesis was recovered by addition of 1 ng/ml IL-1beta on Day 11. Expression of inducible nitric oxide synthase (iNOS), detected by immunofluorescence, was elevated on Day 2 and declined through Day 14, which coordinated with the pattern of NO release. On the other hand, IL-1beta-induced MMP-13 synthesis was elevated on Day 3, declined on Day 5, and then increased again through Day 14. IL-1beta increased glucose consumption and lactate production throughout the treatment. IL-1beta stimulated proteoglycan degradation in the early days and inhibited proteoglycan synthesis through Day 14. Chondron pellet cultures from non-OA cartilage released the same amount of NO but produced less PGE(2) and MMP-13 in response to IL-1beta than OA cultures. Like the OA, IL-1beta-induced NO and PGE(2) release decreased over time. In conclusion, with prolonged exposure to IL-1beta, human chondrocytes develop selective tolerance involving NO and PGE(2) release but not MMP-13 production, metabolic activity, or matrix metabolism.  相似文献   

2.
Both mechanical loading and interleukin-1beta (IL-1beta) are known to regulate metabolic processes in articular cartilage through pathways mediated by nitric oxide ((*)NO) and PGE(2). This study uses a well-characterized model system involving isolated chondrocytes cultured in agarose constructs to test the hypothesis that dynamic compression alters the synthesis of (*)NO and PGE(2) by IL-1beta-stimulated articular chondrocytes. The data presented demonstrate for the first time that dynamic compression counteracts the effects of IL-1beta on articular chondrocytes by suppressing both (*)NO and PGE(2) synthesis. Inhibitor experiments indicated that the dynamic compression-induced inhibition of PGE(2) synthesis and stimulation of proteoglycan synthesis were (*)NO mediated, while compression-induced stimulation of cell proliferation was (*)NO independent. The inhibition of (*)NO and PGE(2) by dynamic compression is a finding of major significance that could contribute to the development of novel strategies for the treatment of cartilage-degenerative disorders.  相似文献   

3.
Elevated levels of PGE(2) have been reported in synovial fluid and cartilage from patients with osteoarthritis (OA). However, the functions of PGE(2) in cartilage metabolism have not previously been studied in detail. To do so, we cultured cartilage explants, obtained from patients undergoing knee replacement surgery for advanced OA, with PGE(2) (0.1-10 muM). PGE(2) inhibited proteoglycan synthesis in a dose-dependent manner (maximum 25% inhibition (p < 0.01)). PGE(2) also induced collagen degradation, in a manner inhibitable by the matrix metalloproteinase (MMP) inhibitor ilomastat. PGE(2) inhibited spontaneous MMP-1, but augmented MMP-13 secretion by OA cartilage explant cultures. PCR analysis of OA chondrocytes treated with PGE(2) with or without IL-1 revealed that IL-1-induced MMP-13 expression was augmented by PGE(2) and significantly inhibited by the cycolooygenase 2 selective inhibitor celecoxib. Conversely, MMP-1 expression was inhibited by PGE(2), while celecoxib enhanced both spontaneous and IL-1-induced expression. IL-1 induction of aggrecanase 5 (ADAMTS-5), but not ADAMTS-4, was also enhanced by PGE(2) (10 muM) and reversed by celecoxib (2 muM). Quantitative PCR screening of nondiseased and end-stage human knee OA articular cartilage specimens revealed that the PGE(2) receptor EP4 was up-regulated in OA cartilage. Moreover, blocking the EP4 receptor (EP4 antagonist, AH23848) mimicked celecoxib by inhibiting MMP-13, ADAMST-5 expression, and proteoglycan degradation. These results suggest that PGE(2) inhibits proteoglycan synthesis and stimulates matrix degradation in OA chondrocytes via the EP4 receptor. Targeting EP4, rather than cyclooxygenase 2, could represent a future strategy for OA disease modification.  相似文献   

4.
Interleukin-6 (IL-6) levels are markedly increased in the synovial fluid of patients with rheumatoid arthritis or osteoarthritis. However, the effects of IL-6 on proliferation and proteoglycan metabolism in articular cartilage are not known. We demonstrated here the effects of human recombinant (hr) IL-6 on proliferation and proteoglycan metabolism in rabbit articular chondrocyte cultures. In vitro, these cells proliferated and produced abundant extracellular matrices. We found that 1-10 ng/ml of hrIL-6 inhibited proliferation to approximately 65% of control levels and suppressed colony formation induced by bFGF in soft agarose. The same concentration of hrIL-6 depressed proteoglycan synthesis to approximately 60% of control levels. Moreover, hrIL-6 significantly enhanced proteoglycan degradation induced by hrIL-1beta, although hrIL-6 alone did not affect proteoglycan degradation. These findings suggest that IL-6 is a negative regulator for chondrocyte proliferation and articular cartilage metabolism.  相似文献   

5.
6.
Interleek-1beta (IL-1) is a key mediator of cartilage matrix degradation in osteoarthritis and rheumatoid arthritis. It was found that the IL-1-induced suppression of glycosaminoglycan (GAG) synthesis in rat articular cartilage occurred simultaneously with the accumulation of nitrite (a metabolite of nitric oxide (NO) in aqueous milieu) in the culture medium. NO-synthase inhibitors, L-NMMA and L-NIO, inhibited both these IL-1 effects. Dexamethasone suppressed GAG synthesis additively to IL-1, but did not alter nitrite accumulation. Three NO-donors (GEA 3175, SNAP and SIN-1) also had an inhibitory effect on cartilage GAG synthesis. Therefore, it is concluded that IL-1 induced suppression of GAG synthesis in rat articular cartilage is mediated by the production of NO.  相似文献   

7.
Inhibitors of p38 mitogen-activated protein kinase (MAPK) diminish inflammatory arthritis in experimental animals. This may be effected by diminishing the production of inflammatory mediators, but this kinase is also part of the IL-1 signal pathway in articular chondrocytes. We determined the effect of p38 MAPK inhibition on proliferative and synthetic responses of lapine chondrocytes, cartilage, and synovial fibroblasts under basal and IL-1-activated conditions.Basal and growth factor-stimulated proliferation and proteoglycan synthesis were determined in primary cultures of rabbit articular chondrocytes, first-passage synovial fibroblasts, and cartilage organ cultures. Studies were performed with or without p38 MAPK inhibitors, in IL-1-activated and control cultures. Media nitric oxide and prostaglandin E2 were assayed.p38 MAPK inhibitors blunt chondrocyte and cartilage proteoglycan synthesis in response to transforming growth factor beta; responses to insulin-like growth factor 1 (IGF-1) and fetal calf serum (FCS) are unaffected. p38 MAPK inhibitors significantly reverse inhibition of cartilage organ culture proteoglycan synthesis by IL-1. p38 MAPK inhibition potentiated basal, IGF-1-stimulated and FCS-stimulated chondrocyte proliferation, and reversed IL-1 inhibition of IGF-1-stimulated and FCS-stimulated DNA synthesis. Decreases in nitric oxide but not prostaglandin E2 synthesis in IL-1-activated chondrocytes treated with p38 MAPK inhibitors are partly responsible for this restoration of response. Synovial fibroblast proliferation is minimally affected by p38 MAPK inhibition.p38 MAPK activity modulates chondrocyte proliferation under basal and IL-1-activated conditions. Inhibition of p38 MAPK enhances the ability of growth factors to overcome the inhibitory actions of IL-1 on proliferation, and thus could facilitate restoration and repair of diseased and damaged cartilage.  相似文献   

8.
在温育的小牛关节软骨切片介质中加入黄嘌呤氧化酶/次黄嘌呤活性氧产生系统,可使关节软骨蛋白聚糖的降解显著增高。这种作用不能被超氧化物歧化酶或铁络合剂二乙三胺戊乙酸抑制,但可被过氧化氢酶抑制。在温育的介质中加入H_2O_2,也可使关节软骨蛋白聚糖降解增高,Cu~(2+)或Co~(2+)对此有显著促进作用,其它过渡金属则作用不明显。应用Sepharose 6B柱层析,分析软骨蛋白聚糖降解产物,多数实验组只在kD=0处有一个大分子的洗脱峰,但Cu~(2+)+H_2O_2组则在kD=0及0.57处出现两个洗脱峰(分别称为峰Ⅰ及峰Ⅱ)。醋酸纤维素薄膜双向电泳证实峰Ⅱ为硫酸软骨素,提示Cu~(2+)与H_2O_2复合物可导致蛋白聚糖分子的断裂。本研究结果可能有助于阐明某些变性型骨关节疾病的发病机理,例如因缺硒所致的大骨节病等。  相似文献   

9.
Lipopolysaccharide (LPS) induces matrix degradation and markedly stimulates the production of several cytokines, i.e., interleukin-1β, −6, and −10, by disc cells and chondrocytes. We performed a series of experiments to compare cellular responses of cells from the bovine intervertebral disc (nucleus pulposus and annulus fibrosus) and from bovine articular cartilage to LPS. Alginate beads containing cells isolated from bovine intervertebral discs and articular cartilage were cultured with or without LPS in the presence of 10% fetal bovine serum. The DNA content and the rate of proteoglycan synthesis and degradation were determined. In articular chondrocytes, LPS strongly suppressed cell proliferation and proteoglycan synthesis in a dose-dependent manner and stimulated proteoglycan degradation. Compared with articular chondrocytes, nucleus pulposus cells responded in a similar, although less pronounced manner. However, treatment of annulus fibrosus cells with LPS showed no significant effects on proteoglycan synthesis or degradation. A slight, but statistically significant, inhibition of cell proliferation was observed at high concentrations of LPS in annulus fibrosus cells. Thus, LPS suppressed proteoglycan synthesis and stimulated proteoglycan degradation by articular chondrocytes and nucleus pulposus cells. The effects of LPS on annulus fibrosus cells were minor compared with those on the other two cell types. The dissimilar effects of LPS on the various cell types suggest metabolic differences between these cells and may further indicate a divergence in pathways of LPS signaling and a differential sensitivity to exogenous stimuli such as LPS.This work was supported in part by NIH grants 2-P50-AR39239 and 1-P01-AR48152.  相似文献   

10.
Chowdhury TT  Bader DL  Lee DA 《Biorheology》2006,43(3-4):413-429
*NO and PGE2 are inflammatory mediators derived from the inducible iNOS and COX enzymes and are potentially important pharmacological targets in OA. Both mechanical loading and IL-1beta will influence the release of *NO and PGE2. Accordingly, the current study examines the effect of dynamic compression on *NO and PGE2 release by human chondrocytes cultured in agarose constructs in the presence and absence of selective iNOS and COX-2 inhibitors. The current data demonstrate that IL-1beta induced nitrite and PGE2 release and inhibited [3H]-thymidine and 35SO4 incorporation. Inhibitor experiments indicate that 1400W and NS-398 either partially reversed or abolished IL-1beta induced nitrite and PGE2 release. IL-1beta induced inhibition of cell proliferation and proteoglycan synthesis was partially reversed with 1400W but was not influenced by NS-398. For the dynamic loading experiments, 1400W and NS-398 either reduced or abolished the compression-induced inhibition of *NO and PGE2 release in the presence of IL-1beta. The IL-1beta induced inhibition of cell proliferation was not influenced by 1400W or NS-398 whereas strain-induced stimulation of proteoglycan synthesis in the presence of IL-1beta was enhanced by 1400W. The data obtained using human chondrocytes demonstrate that IL-1beta induced *NO and PGE2 release via an iNOS-driven-COX-2 inter-dependent pathway. This response could be reversed by dynamic compression. These data indicate interactions exist between the NOS and COX pathways, a finding which will provide new insights in the development of pharmacological or biophysical treatments for cartilage disorders such as OA.  相似文献   

11.
12.
Several factors are known to be involved in the destruction of the articular cartilage. Interleukin-1 (IL-1) plays an important role in the pathogenesis of osteoarthritis (OA) either directly or through the stimulation of catabolic factors. The action of IL-1 on articular cartilage is multifaceted and it most likely plays an important role in the mechanism of cartilage destruction. IL-1 suppresses the synthesis of the cartilage matrix components and promotes the degradation of cartilage matrix macromolecules. Diacerein is an anthraquinone molecule that has been shown to reduce the severity of OA, both in man and in animal models. The present study was designed to evaluate in vitro effects of diacerein on IL-1beta expression in LPS or IL-1alpha stimulated chondrocytes. Intracellular IL-1beta production was analysed in articular chondrocytes cultured in monolayer or in alginate 3D-biosystems in the presence of lipopolysaccharide (LPS) or IL-1alpha, with or without diacerein. The results show that LPS and IL-1alpha increase intracellular IL-1beta and Diacerein inhibited LPS-induced and IL-1alpha induced IL-1beta production by articular chondrocytes. Moreover, the effect of mechanical stimulation was analysed. An inhibitory effect of DAR at therapeutic concentrations on IL-1beta production in articular chondrocytes is suggested.  相似文献   

13.
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway.  相似文献   

14.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been shown to inhibit the effects of proinflammatory cytokines such as interleukin-1beta (IL-1beta). This cytokine plays a key role in articular pathophysiologies by inducing the production of inflammatory mediators such as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). We previously demonstrated that 15d-PGJ(2) was more potent than troglitazone to counteract IL-1beta effects on chondrocytes. Here, we studied the action of 15d-PGJ(2) on intracellular targets in nuclear factor-kappaB (NF-kappaB) signalling pathway in IL-1beta treated rat chondrocytes. We found that 15d-PGJ(2) decreased inhibitor kappaBalpha (IkappaBalpha) degradation but not its phosphorylation by specifically inhibiting IkappaB kinase beta (IKKbeta), but not IKKalpha, enzymatic activity. We further evaluated the involvement of PPARgamma in the anti-inflammatory action of its ligands. In chondrocytes overexpressing functional PPARgamma protein, 15d-PGJ(2) pre-treatment inhibited inducible NO synthase and COX-2 mRNA expression, nitrite and PGE(2) production, p65 translocation and NF-kappaB activation. Troglitazone or rosiglitazone pre-treatment had no effect. 15d-PGJ(2) exhibited the same effect in chondrocytes overexpressing mutated PPARgamma protein. These results suggest that 15d-PGJ(2) exerts its anti-inflammatory effect in rat chondrocytes by a PPARgamma-independent mechanism, which can be conferred to a partial inhibition of IkappaBalpha degradation.  相似文献   

15.
Cartilage loss in osteoarthritis is characterized by matrix degradation and chondrocyte death. The lipid messenger ceramide is implicated in signal transduction of the catabolic cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1), as well as in apoptosis. The aim of this study was to examine the in vitro effects of ceramide on proteoglycan degradation, matrix-metalloproteinase (MMP) expression and activity, and chondrocyte apoptosis in rabbit articular cartilage. Cell-permeant ceramide C(2) stimulated proteoglycan degradation in cartilage explants starting from 3 x 10(-5) M, with 100% increase at the dose of 10(-4) M. This effect was probably due to MMPs since it was blocked by the MMP inhibitor batimastat. Furthermore, in isolated chondrocytes, C(2) stimulated the expression of MMP-1, 3, and 13 at the mRNA level, MMP activity, and MMP-3 production. Ceramide also caused chondrocyte apoptosis at doses ranging from 10(-5) to 10(-4) M. This study supports the hypothesis that ceramide might play a mediatory role in both matrix degradation and apoptosis in processes of cartilage loss such as those observed in osteoarthritis.  相似文献   

16.
The activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to inhibit the production and the effects of proinflammatory cytokines. Since interleukin-1beta (IL-1beta) directly mediates cartilage degradation in osteoarthritis, we investigated the capability of PPARgamma ligands to modulate IL-1beta effects on human chondrocytes. RT-PCR and Western blot analysis revealed that PPARgamma expression was decreased by IL-1beta. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), in contrast to troglitazone, was highly potent to counteract IL-1beta-induced cyclooxygenase-2 and inductible nitric oxide synthase expression, NO production and the decrease in proteoglycan synthesis. Western blot and gel-shift analyses demonstrated that 15d-PGJ2 inhibited NF-kappaB activation, while troglitazone was ineffective. Although 15d-PGJ2 attenuated activator protein-1 binding on the DNA, it potentiated c-jun migration in the nucleus. The absence or the low effect of troglitazone suggests that 15d-PGJ2 action in human chondrocytes is mainly PPARgamma-independent.  相似文献   

17.
18.
Osteoarthritis (OA) is characterized by articular cartilage degradation and joint inflammation. The purpose of the present study is to elucidate the role of the specific function of PRMT1 in chondrocytes and its association with the pathophysiology of OA. We observed that the expression of PRMT1 was apparently upregulated in OA cartilage, as well as in chondrocytes stimulated with IL-1β. Additionally, knockdown of PRMT1 suppressed interleukin 1 beta (IL-1β)-induced extracellular matrix (ECM) metabolic imbalance by regulating the expression of MMP-13, ADAMTS-5, COL2A1, and ACAN. Furthermore, silencing of PRMT1 dramatically declined the production of prostaglandin E2 (PGE2) and nitric oxide as well as the level of pro-inflammatory cytokine IL-6 and TNF-α. Mechanistic analyses further revealed that IL-1β-induced activation of the Hedgehog/Gli-1 signaling is suppressed upon PRMT1 knockdown. However, the effects of inhibition of PRMT1-mediated IL-1β-induced cartilage matrix degradation and inflammatory response in OA chondrocytes were obviously abolished by Hedgehog agonist Purmorphamine (Pur). Our data collectively suggest that silencing of PRMT1 exerts anti-catabolic and anti-inflammatory effects on IL-1β-induced chondrocytes via suppressing the Gli-1 mediated Hedgehog signaling pathway, indicating that PRMT1 plays a critical role in OA development and serves as a promising therapeutic target for OA.  相似文献   

19.
The addition of foetal calf serum to explant cultures of adult bovine articular cartilage is known to stimulate proteoglycan synthesis in a dose-dependent manner. We have now shown the activity in serum responsible for this effect to be heat- and acid-stable, to be associated with a high-Mr complex in normal serum but converted to a low-Mr form under acid conditions. The activity has an apparent Mr approximately 10,000 and isoelectric points similar to those reported for insulin-like growth factors (IGFs). Addition of a monoclonal antibody against insulin-like growth factor-I (IGF-I) prevented foetal calf serum from stimulating proteoglycan synthesis. Physiological concentrations of recombinant IGF-I or pharmacological levels of insulin when added to cartilage cultures mimicked the proteoglycan-stimulatory activity of serum. IGF-I appeared to act by increasing the rate of proteoglycan synthesis and did not change the nature of the proteoglycan synthesized nor the rate of proteoglycan catabolism by the tissue, suggesting that IGF-I may be important in the regulation of proteoglycan metabolism in adult articular cartilage. Furthermore, IGF-I can replace foetal calf serum in the culture medium, thereby allowing the use of a fully-defined medium which will maintain the synthesis and tissue levels of proteoglycan in adult articular cartilage explants for up to 5 days.  相似文献   

20.
To clarify the mechanism of cartilage degradation induced by mechanical stress, we investigated the influence of cyclic tension force (CTF) on the metabolism of cultured chondrocytes. The chondrocytes were exposed to CTF using a Flexercell strain unit. Five or 15 kPa of high frequency CTF significantly inhibited the syntheses of DNA, proteoglycan, collagen, and protein. Fifteen kPa of high frequency CTF induced the expression of interleukin-1 (IL-1), matrix metalloproteinase (MMP)-2 and -9 mRNA, and increased the production of pro- and active-MMP-9. The degradation of proteoglycan was inhibited by and MMP inhibitor, indicating that MMPs are involved in the degradation of proteoglycans induced by high frequency CTF. Moreover, reducing the frequency of CTF from high to low decreased the inhibition of proteoglycan synthesis. These findings suggest that the CTF frequency is one of the key determinants of chondrocyte metabolism. Low magnitude CTF, whether high or low frequency, did not cause the gene expression of cartilage degradation factors, suggesting that this CTF magnitude causes only minor changes in the cartilage matrix. High magnitude and frequency CTF caused the gene expression of IL-1 and MMP-9, followed by increases in the production of MMP-2 and -9 proteins, suggesting that excessive and continuous cyclic mechanical stress induces the production of IL-1 and MMP-9, resulting in cartilage degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号