首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human liver acidic alpha-D-mannosidase was purified 1400-fold by a relatively short procedure incorporating chromatography on concanavalin A-Sepharose and affinity chromatography on Sepharose 4B-epsilon-aminohexanoylmannosylamine. In contrast with the acidic enzymic activity the neutral alpha-mannosidase did not bind to the concanavalin A-Sepharose so the two types of alpha-mannosidase could be separated at an early stage in the purification. The only significant glycosidase contaminant after affinity chromatography on the mannosylamine ligand was alpha-L-fucosidase, which was selectively removed by affinity chromatography on the corresponding fucosylamine ligand. The final preparation was free of other glycosidase activities. The pI of the purified enzyme was increased from 6.0 to 6.45 on treatment with neuraminidase. Although the pI and the mol.wt. (220 000) suggested that alpha-mannosidase A had been purified selectively, ion-exchange chromatography on DEAE-cellulose indicated that the preparation consisted predominantly of alpha-mannosidase B. This discrepancy is discussed in relation to the basis of the multiple forms of human alpha-mannosidase. The purified enzyme completely removed the alpha-linked non-reducing terminal mannose from a trisaccharide isolated from the urine of a patient with mannosidosis. A comparison of the activity of the pure enzyme towards the natural substrate and synthetic substrates suggests that the same enzymic activity is responsible for hydrolysing all the substrates. These results validate the use of synthetic substrates for determining the mannosidosis genotype. They are also further evidence that mannosidosis is a lysosomal storage disease resulting from a deficiency of acidic alpha-mannosidase.  相似文献   

3.
In order to improve the specificity and sensitivity of the techniques for the human anisakidosis diagnosis, a method of affinity chromatography for the purification of species-specific antigens from Anisakis simplex third-stage larvae (L3) has been developed. New Zealand rabbits were immunized with A. simplex or Ascaris suum antigens or inoculated with Toxocara canis embryonated eggs. The IgG specific antibodies were isolated by means of protein A-Sepharose CL-4B beads columns. IgG anti-A. simplex and -A. suum were coupled to CNBr-activated Sepharose 4B. For the purification of the larval A. simplex antigens, these were loaded into the anti-A. simplex column and bound antigens eluted. For the elimination of the epitopes responsible for the cross-reactions, the A. simplex specific proteins were loaded into the anti-A. suum column. To prove the specificity of the isolated proteins, immunochemical analyses by polyacrylamide gel electrophoresis were carried out. Further, we studied the different responses by ELISA to the different antigenic preparations of A. simplex used, observing their capability of discriminating among the different antisera raised in rabbits (anti-A. simplex, anti-A. suum, anti-T. canis). The discriminatory capability with the anti-T. canis antisera was good using the larval A. simplex crude extract (CE) antigen. When larval A. simplex CE antigen was loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with A. simplex CE antigen, its capability for discriminate between A. simplex and A. suum was improved, increasing in the case of T. canis. The best results were obtained using larval A. simplex CE antigen loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with adult A. suum CE antigen. When we compared the different serum dilution and antigenic concentration, we selected the working serum dilution of (1/4)00 and 1 microg/ml of antigenic concentration.  相似文献   

4.
The linear order of nine fragments generated by the action of endonuclease AvaI on the DNA of bacteriophage lambda was determined from the altered fragmentation patterns of bacteriophages containing known deletions and of hybrids of bacteriophages lambda and phi80. Digestion of 5'-terminally 32P-labelled bacteriophage-lambda DNA was used to identify the terminal fragments. Measurement of relative fragment lengths permitted rough mapping of the endonuclease-AvaI cleavage sites relative to the ends of the bacteriophage-lambda chromosome. The fragment order was confirmed and the map refined by analysis of the fragmentation of derivative phages containing single cleavage sites for endonuclease EcoRI.  相似文献   

5.
Microsomal estrogen synthetase (cytochrome P-450ES), also known as aromatase, was purified from fresh human placenta microsomes by DEAE-Trisacryl and testosterone-agarose chromatography. Estrogen synthetase assays were done with androstenedione as substrate, NADPH as electron donor, and a partially purified P-450 reductase from human placenta as the electron carrier. The specific cytochrome P-450 content of the purified P-450 was 0.67 nmol mg-1 of protein, and the preparation contained no cytochrome P-420. The absorbance maximum was 448.5 nm. The specific estrogen synthetase activity of the purified P-450ES fraction was 35 nmol min-1 nmol-1 of cytochrome P-450 or 23.3 nmol min-1 mg-1 of protein. The latter value shows a 179-fold purification with a yield greater than 1% in the two-step procedure. Kinetic constants for the reaction were measured with androstenedione as the aromatizable substrate. The Km was 1.4 nM and the Vmax was 37 nmol min-1 nmol-1 of P-450. The purified enzyme aromatized androstenedione and testosterone at identical rates; androstenedione gave only estrone, and testosterone gave only estradiol-17 beta. Dehydroepiandrosterone was not detectably aromatized or otherwise metabolized. Neither 16 alpha-hydroxytestosterone nor 16 alpha-hydroxyandrostenedione was aromatized. No hydroxysteroid dehydrogenase or reductase was detected in direct assays. No free reaction intermediates were detected in aromatization assay incubation mixtures. The purity of the product and the simplicity of the preparation recommend it for use in further studies of the enzyme.  相似文献   

6.
7.
Atrial granule serine proteinase is considered the leading candidate endoproteolytic processing enzyme of pro-atrial natriuretic factor. Its cleavage specificity is directed toward a monobasic amino acid processing site, and as such, the atrial enzyme is distinguished from the family of prohormone convertases which act at dibasic amino acid processing sites. To delineate the molecular mechanisms which distinguish monobasic from dibasic amino acid-directed processing enzymes, pure atrial enzyme is needed for sequence determination leading to molecular cloning, and for preparation of antisera. An affinity chromatography purification scheme seemed a logical modification of our established procedures to yield suitable amounts of enzyme for further studies. Surprisingly, pseudo-peptide bond inhibitors of the atrial enzyme [Damodaran and Harris (1995),J. Protein Chem., this issue] formed ineffective affinity ligands, even though these compounds contain essential residues on either side of what would be the scissile bond in a peptide substrate. On the other hand, tripeptide aldehydes (based on the substrate recognition sequence of the atrial enzyme) linked to Sepharose formed effective affinity matrices, permitting purification of the enzyme in a single step from a subcellular fraction enriched for atrial granules and lysosomes. Hence, the enzyme was purified 2000-fold in 90% overall yield, and subjected to N-terminal sequence analysis through 26 residues. The sequence determined, XXPEAAGLPG[R, L]GNPVP[F, G]R[Q, I]XY[G, E]XR(N, A]V, indicates that the atrial enzyme is unique, showing little sequence homology to other proteins in the database.Abbreviations AGSP atrial granule serine proteinase - ANF atrial natriuretic factor - BSA bovine serum albumin - Bz benzoyl - EACA 6()-aminocaproic acid - HEPES N-2-hydroxyethylpiperazine-N'-propanesulfonic acid - HPLC high-performance liquid chromatography - PEG polyethylene glycol-3350 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Single-letter abbreviations are used to denote amino acids  相似文献   

8.
9.
The product distribution in autoactivated bovine trypsinogen has been studied by analytical affinity chromatography. In the presence of Ca2+ more β- than α-trypsin is formed. In the absence of Ca2+ mainly α-trypsin is formed. These results and data on the autolysis of α- and β-trypsin show that α-trypsin is a hydrolysis product of an inactive intermediate, neo-trypsinogen, formed after hydrolysis of a peptide bond in the middle of the trypsinogen polypeptide chain.  相似文献   

10.
Arylsulfatase A (aryl-sulfate sulfohydrolase, EC 3.1.6.1) was isolated from an ammonium sulfate precipitate of urinary proteins using two different affinity chromatography methods. One method involved the use of concanavalin A-Sepharose affinity chromatography at an early stage of purification, followed by preparative polyacrylamide gel electrophoresis. The other procedure employed arylsulfatase subunit affinity chromatography as the main step and resulted in a remarkably efficient purification. The enzyme had a specific activity of 63 U/mg. The final preparation of arylsulfatase A was homogeneous on the basis of polyacrylamide gel electrophoresis at pH 7.5, and by immunochemical analysis. However, when an enzyme sample obtained by either method of purification was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing or non-reducing conditions, peptide subunits, of 63.5 and 54.5 kDa, were observed. Immunological tests with 125I-labeled enzyme established the presence of a common protein component in both of the electrophoretically separable peptide subunits of human urine arylsulfatase. The amino acid analysis of homogeneous human urine arylsulfatase A showed only a few differences between it and the human liver enzyme. However, immunological cross-reactivity studies using rabbit anti-human urine arylsulfatase revealed immunological difference between the human urine and liver arylsulfatase A enzymes.  相似文献   

11.
M Lhermitte  G Lamblin  P Degand  P Roussel 《Biochimie》1975,57(11-12):1293-1299
Two lectin fractions (S20W = 6,8 and 4,9 S) were purified from Ricinus communis seeds. The purification was carried out in four steps : ammonium sulfate fractionation, affinity chromatography on Sepharose 4 B, gel filtration on Sephadex G 150 and chromatography on CM celluloes. The purified lectins were glycoproteins whose chemical composition was determined. Amino terminal analysis of the two fractions revealed glycine and serine. Polyacrylamide gel electrophoresis of the higher molecular weight fraction allowed the separation of several components with different affinity for PAS staining.  相似文献   

12.
A method is described for the preparation of p-aminophenyl oligo(dT)-Sepharose. This matrix has been used for the purification of polynucleotide phosphorylase from both E.coli and B.stearothermophilus. The effects of temperature and pH on the binding of the different enzymes to the matrix have been investigated. B.stearothermophilus isolated by affinity chromatography may be useful in selectively removing the polyA tract on the 3′-end of mRNA's.  相似文献   

13.
Two rapid and high yield purification methods for the rat liver glucocorticoid receptor based on differential DNA affinity (method A) and ligand affinity (method B) chromatography are described. In method A, the amount of receptor in rat liver cytosol that can be activated and subsequently eluted from a DNA-cellulose column has been increased to 80% by introducing a second heat activation step. Using this method, 1.5 nmol of 25% pure glucocorticoid receptor can be routinely obtained per day from 15-20 rat livers. Method B yields about 2.2 nmol of 60% pure receptor with an overall yield of congruent to 60%. The quality of these purifications has been controlled by affinity labeling. In each case, more than 95% of purified binding activity represented the intact 92,000 +/- 400-Da glucocorticoid receptor polypeptide as shown by sodium dodecyl sulfate-gel electrophoresis and fluorography. No difference in the labeling pattern was observed using either [3H]triamcinolone acetonide (photoaffinity labeling) or [3H]dexamethasone 21-mesylate (electrophilic labeling). The electrophilic labeling step was performed in the cytosol prior to purification by method A to compare the labeled components thus purified with those obtained when the photoaffinity labeling was performed after the purification. Using this approach, distinct breakdown products of the glucocorticoid receptor were revealed, co-purifying during DNA affinity chromatography. Cross-linked receptor obtained by method A has been further purified to homogeneity by preparative sodium dodecyl sulfate-gel electrophoresis and successfully used as immunogen to raise glucocorticoid receptor antibodies in rabbits. These antibodies raised against glucocorticoid receptor, as well as those previously obtained using affinity chromatography-purified receptor, react with the receptor molecules irrespective of their method of purification. Glucocorticoid receptors purified by methods A and B have been analyzed for specific DNA-binding properties by the nitrocellulose filter binding assay.  相似文献   

14.
Dihydrofolate reductase from soybean seedlings has been purified by agarose-formylaminopterin affinity chromatography. The enzyme is homogeneous as judged by disc gel electrophoresis and immunodiffusion. Analysis by both Sephadex G-200 column chromatography and Sephadex (superfine) G-200 thin-layer gel filtration gives a molecular weight of about 140,000 for the enzyme. Sodium dodecyl sulfate-gel electrophoresis reveals the presence of nonidentical subunits. The enzyme contains nine sulfhydryl groups and is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 5,5-dithiobis(2-nitrobenzoic acid). Folate analogs methotrexate, aminopterin, and formylaminopterin cause potent inhibition of the enzyme, with I50 values (concentration required for 50% inhibition) of 0.25, 0.63, and 1.78 μm respectively. The turnover number of the enzyme is 57. Km values for dihydrofolate and NADPH are 35 and 415 μm, respectively. Dihydrofolate, but not NADPH, affords protection against heat inactivation and the protection constant, Kp (concentration of dihydrofolate at which half the original activity is retained), is 81 μm.  相似文献   

15.
16.
A method is presented for the preparation of human liver alkaline phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.1). The method gives a purification factor of 12.5 X 10(3) over the initial aq. butan-1-ol extract, a recovery of 6.0% and a specific activity for the preparation of 1450-1550 units/mg of protein, 1 unit being defined as the amount of enzyme catalysing the hydrolysis of 1mumol of p-nitrophenyl phosphate/min at 35 degrees C in 0.1 M-2-amino-2-methylpropan-1-ol/HCl buffer, pH 10.5, containing 10mM-p-nitrophenyl phosphate. Homogeneity was studied by ultracentrifugation, by immunoelectrophoresis and by polyacrylamide-gel electrophoresis. A single contaminating protein was present which was less than 5% of the total. Ultracentrifugation and equilibrium-gradient-pore electrophoresis techniques indicated a mol.wt. of 156000 and 160000 respectively. Equilibrium-gradient-pore electrophoresis indicated that the alkaline phosphatase molecule is possibly a dimer, comprising two subunits of about 80000 mol.wt. Amino acid analysis proved remarkably similar to that for alkaline phosphatase from other sources, regardless of species.  相似文献   

17.
A method is described for the subfractionation of plasma membranes from thymus lymphocytes by means of affinity chromatography on concanavalin A-Sepharose. Thymus lymphocytes were disrupted by nitrogen cavitation, microsomal membranes isolated by differential centrifugation, and plasma membranes purified from microsomes by sucrose gradient ultracentrifugation. Plasma membranes were highly purified as indicated by marker enzymes and chemical analysis. To obtain membrane preparations suited for lectin-dependent affinity chromatography, sucrose was removed slowly by gradient dialysis. Plasma membranes were then equilibrated for 20 min at 4°C with concanavalin A-Sepharose, which allowed the separation of membranes into a fraction eluting freely (MF1) and a second fraction binding to the affinity absorbent (MF2), with a total recovery of about 90%. Increasing the temperature or binding time did not alter the fractionation of the plasma membrane into the two subfractions. Fractionation required the binding of matrix-bound concanavalin A to plasma membrane binding sites. Both plasma membrane subfractions proved to have preserved their original orientation (right-side out). The method described is suited to isolate different domains of the lymphocyte plasma membrane.  相似文献   

18.
Acetyl-CoA carboxylase (EC 6.4.1.2) has been isolated from rat liver by an avidin-affinity chromatography technique. This preparation has a specific activity of 1.17 +/- 0.06 U/mg and appears as a major (240,000 dalton) and minor (140,000 dalton) band on SDS-polyacrylamide gel electrophoresis. Enzyme isolated by this technique can incorporate 1.09 +/- 0.07 mol phosphate per mol enzyme (Mr = 480,000) when incubated with the catalytic subunit of the cyclic AMP-dependent protein kinase at 30 degrees C for 1 h. The associated activity loss under these conditions is 57 +/- 4.0% when the enzyme is assayed in the presence of 2.0 mM citrate. Less inactivation is observed when the enzyme is assayed in the presence of 5.0 mM citrate. The specific protein inhibitor of the cyclic AMP-dependent protein kinase blocks both the protein kinase stimulated phosphorylation and inactivation of acetyl-CoA carboxylase. The phosphorylated, inactivated rat liver carboxylase can be partially dephosphorylated and reactivated by incubation with a partially purified protein phosphatase. Preparations of acetyl-CoA carboxylase also contained an endogenous protein kinase(s) which incorporated 0.26 +/- 0.11 mol phosphate per mol carboxylase (Mr = 480,000) accompanied by a 26 +/- 9% decline in activity. We have additionally confirmed that the rat mammary gland enzyme, also isolated by avidin affinity chromatography, can be both phosphorylated and inactivated upon incubation with the cyclic AMP-dependent kinase.  相似文献   

19.
Glutathione reductase (EC 1.6.4.2) was purified from spinach (Spinacia oleracea L.) leaves by affinity chromatography on ADP-Sepharose. The purified enzyme has a specific activity of 246 enzyme units/mg protein and is homogeneous by the criterion of polyacrylamide gel electrophoresis on native and SDS-gels. The enzyme has a molecular weight of 145,000 and consists of two subunits of similar size. The pH optimum of spinach glutathione reductase is 8.5–9.0, which is related to the function it performs in the chloroplast stroma. It is specific for oxidised glutathione (GSSG) but shows a low activity with NADH as electron donor. The pH optimum for NADH-dependent GSSG reduction is lower than that for NADPH-dependent reduction. The enzyme has a low affinity for reduced glutathione (GSH) and for NADP+, but GSH-dependent NADP+ reduction is stimulated by addition of dithiothreitol. Spinach glutathione reductase is inhibited on incubation with reagents that react with thiol groups, or with heavymetal ions such as Zn2+. GSSG protects the enzyme against inhibition but NADPH does not. Pre-incubation of the enzyme with NADPH decreases its activity, so kinetic studies were performed in which the reaction was initiated by adding NADPH or enzyme. The Km for GSSG was approximately 200 M and that for NADPH was about 3 M. NADP+ inhibited the enzyme, assayed in the direction of GSSG reduction, competitively with respect to NADPH and non-competitively with respect to GSSG. In contrast, GSH inhibited non-competitively with respect to both NADPH and GSSG. Illuminated chloroplasts, or chloroplasts kept in the dark, contain equal activities of glutathione reductase. The kinetic properties of the enzyme (listed above) suggest that GSH/GSSG ratios in chloroplasts will be very high under both light and dark conditions. This prediction was confirmed experimentally. GSH or GSSG play no part in the light-induced activation of chloroplast fructose diphosphatase or NADP+-glyceraldehyde-3-phosphate dehydrogenase. We suggest that GSH helps to stabilise chloroplast enzymes and may also play a role in removing H2O2. Glucose-6-phosphate dehydrogenase activity may be required in chloroplasts in the dark in order to provide NADPH for glutathione reductase.Abbreviations GSH reduced form of the tripeptide glutathione - GSSG oxidised form of glutathione  相似文献   

20.
Monoclonal antibody has been obtained to the human complement control protein C3b inactivator after immunization of mice with the enzyme prepared by conventional methods. Antibody from ascitic fluid was purified and coupled to Sepharose-CL-4B to give a specific affinity column, which was used to isolate C3b inactivator from human serum in 70% yield. The product was characterized by size, chain structure, amino acid analysis and proteolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号