首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Life sciences》1997,62(4):PL55-PL62
We demonstrated that the fructose-induced hypertensive rat, representative of the principal metabolic abnormalities found in a majority of hypertensive patients, i.e. hypertriglyceridemia, hyperinsulinemia and insulin resistance (Syndrome X), is associated with an impaired response to endothelium-dependent vasodilators and that fructose may directly contribute to this impairment. Twelve male Wistar rats were divided into two groups, one given 10% fructose (n=6); the other no fructose (n=6) for 40 days in the drinking water. Systolic blood pressure was measured via the tail cuff method. Perfusion pressure responses to acetylcholine, were measured in the isolated perfused mesenteric vascular bed. Constrictor or dilator responses were measured as increases or decreases, respectively, of the perfusion pressure at a constant flow (4 ml/min). Fructose-fed rats had significantly higher blood pressure, insulin and triglyceride levels than control animals. In phenylephrine constricted beds, the endothelium-dependent dilatation to acetylcholine (0.001 to 1 μmol) was attenuated in the fructose-fed group compared to control animals. Whether this abnormality results from the syndromes (hyperinsulinemia, hypertension and hypertriglyceridemia) associated with the fructose-fed animal model is unknown. We therefore hypothesized that fructose can impair the endothelium-dependent vasodilator response. This was evaluated by perfusing mesenteric arteries from normal rats with control mannitol (40 mM) or fructose (40 mM). Endothelium-dependent dilation to acetylcholine was impaired in fructose-perfused mesenteric arteries. Indomethacin restored the vasodilator response to acetylcholine, suggesting that a cyclooxygenase derivative mediates the impaired response. Thus, we conclude that fructose can contribute to the impaired endothelium-dependent response in the fructose-induced hypertensive rat model. Published by Elsevier Science Inc.  相似文献   

2.
The aim of this study was to analyze the contribution of nitric oxide, prostacyclin and endothelium-dependent hyperpolarizing factor to endothelium-dependent vasodilation induced by acetylcholine in rat aorta from control and ouabain-induced hypertensive rats. Preincubation with the nitric oxide synthase inhibitor N-omega-nitro-l-arginine methyl esther (L-NAME) inhibited the vasodilator response to acetylcholine in segments from both groups but to a greater extent in segments from ouabain-treated rats. Basal and acetylcholine-induced nitric oxide release were higher in segments from ouabain-treated rats. Preincubation with the prostacyclin synthesis inhibitor tranylcypromine or with the cyclooxygenase inhibitor indomethacin inhibited the vasodilator response to acetylcholine in aortic segments from both groups. The Ca2+-dependent potassium channel blocker charybdotoxin inhibited the vasodilator response to acetylcholine only in segments from control rats. These results indicate that hypertension induced by chronic ouabain treatment is accompanied by increased endothelial nitric oxide participation and impaired endothelium-dependent hyperpolarizing factor contribution in acetylcholine-induced relaxation. These effects might explain the lack of effect of ouabain treatment on acetylcholine responses in rat aorta.  相似文献   

3.
We demonstrated that the decreased response to acetylcholine observed in aorta of male and female spontaneously hypertensive rats is corrected after sustained (15 days) reduction of blood pressure levels by losartan. In order to verify if the same occurs in resistance vessels, vascular diameter changes induced by topical application of acetylcholine and bradykinin (endothelium-dependent vasodilators) and sodium nitroprusside (endothelium-independent vasodilator) to mesenteric arterioles studied in vivo, in situ were determined in rats treated with losartan for 24 h (acute) or 15 days (chronic). Rats that presented similar reduction (in %) of the blood pressure levels after losartan treatment were chosen. Sodium nitroprusside induced similar responses in losartan-treated and untreated male or female SHR. Whereas in female SHR, losartan corrected the diminished arteriolar response to endothelium-dependent vasodilators after acute and chronic treatment, in male SHR this correction only occurred after chronic treatment. Thus, losartan corrected the endothelial dysfunction more easily in female than in male SHR and independently of the normalization or the magnitude of the reduction of the blood pressure levels. In an attempt to explain the difference, we evaluated the losartan effect on nitric-oxide synthase (NOS) activity and angiotensin II AT1 and AT2 receptor gene expression in these animals. In male and female SHR, NOS activity and AT1 receptor expression were not altered by acute or chronic treatment. On the other hand, AT2 receptor expression was augmented only in female SHR by these treatments. Therefore, augmented AT2 receptor expression, but not alteration of NOS activity or AT1 receptor expression, might explain the difference observed.  相似文献   

4.

Aim

Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice.

Methods and Results

Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice.

Conclusions

Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes.  相似文献   

5.
Vascular tissues express arginase that metabolizes L-arginine to L-ornithine and urea and thus reduces substrate availability for nitric oxide formation. Dahl salt-sensitive (Dahl-S) rats with salt-induced hypertension show endothelial dysfunction, including decreased vascular nitric oxide formation. This study tests the hypothesis that increased vascular arginase activity contributes to endothelial dysfunction in hypertensive Dahl-S rats. Male Dahl-S rats (5-6 wk) were placed on high (8%) or low (0.3%) NaCl diets for 4 wk. With respect to the low-salt group, mean arterial blood pressure was increased in the high-salt animals. Immunohistochemical stainings for arginase I and II were enhanced in arterioles isolated from high-salt Dahl-S rats. Experiments used isolated Krebs buffer-superfused first-order gracilis muscle arterioles with constant pressure (80 mmHg) and no luminal flow or constant midpoint but altered endpoint pressures to establish graded levels of luminal flow (0-50 microl/min). In high-salt arterioles, responses to an endothelium-dependent vasodilator acetylcholine (1 nmol/l to 3 micromol/l) and flow-induced dilation were decreased. Acute in vitro treatment with an inhibitor of arginase, 100 micromol/l (S)-(2-boronoethyl)-L-cystine, or the nitric oxide precursor, 1 mmol/l L-arginine, similarly enhanced acetylcholine and flow-induced maximal dilations and abolished the differences between high- and low-salt arterioles. These data show that arteriolar arginase expression is increased and that endothelium-dependent vasodilation is decreased in high-salt Dahl-S rats. Acute pretreatment with an arginase inhibitor or with L-arginine restores endothelium-dependent vasodilation and abolishes the differences between high- and low-salt groups. These results suggest that enhanced vascular arginase activity contributes to endothelial dysfunction in Dahl-S rats with salt-induced hypertension and identifies arginase as a potential therapeutic target to prevent endothelial dysfunction.  相似文献   

6.
The administration of mesenchymal stem cells (MSCs) has been proposed for the treatment of pulmonary hypertension. However, the effect of intratracheally administered MSCs on the pulmonary vascular bed in monocrotaline-treated rats has not been determined. In the present study, the effect of intratracheal administration of rat MSCs (rMSCs) on monocrotaline-induced pulmonary hypertension and impaired endothelium-dependent responses were investigated in the rat. Intravenous injection of monocrotaline increased pulmonary arterial pressure and vascular resistance and decreased pulmonary vascular responses to acetylcholine without altering responses to sodium nitroprusside and without altering systemic responses to the vasodilator agents when responses were evaluated at 5 wk. The intratracheal injection of 3 x 10(6) rMSCs 2 wk after administration of monocrotaline attenuated the rise in pulmonary arterial pressure and pulmonary vascular resistance and restored pulmonary responses to acetylcholine toward values measured in control rats. Treatment with rMSCs decreased the right ventricular hypertrophy induced by monocrotaline. Immunohistochemical studies showed widespread distribution of lacZ-labeled rMSCs in lung parenchyma surrounding airways in monocrotaline-treated rats. Immunofluorescence studies revealed that transplanted rMSCs retained expression of von Willebrand factor and smooth muscle actin markers specific for endothelial and smooth muscle phenotypes. However, immunolabeled cells were not detected in the wall of pulmonary vessels. These data suggest that the decrease in pulmonary vascular resistance and improvement in response to acetylcholine an endothelium-dependent vasodilator in monocrotaline-treated rats may result from a paracrine effect of the transplanted rMSCs in lung parenchyma, which improves vascular endothelial function in the monocrotaline-injured lung.  相似文献   

7.
Late pregnancy in rats is characterized by a decrease in arterial pressure and in isolated arterial vessels response to vasoconstrictors. In uterine arteries the pregnancy-associated attenuation of the response to vasoconstrictors has been attributed to an increase in basal and agonist-induced endothelial NO production. However, the role of NO in pregnancy-associated changes of systemic arteries reactivity to vasoactive agents remains to be fully elucidated. We examined whether pregnancy influences the reactivity of systemic arteries to vasodilator or vasoconstrictor agents through NO-dependent mechanisms. Thoracic aortic rings and mesenteric arterial bed of late pregnant rats showed refractoriness to phenylephrine-induced vasoconstriction that was abolished by NO synthase inhibition. The potency of L-NNA to enhance tension of aortic rings preconstricted with phenylephrine (10–20% of their maximal response) was significantly lower in preparations from pregnant animals. In phenylephrine-contracted aortas and mesenteric bed, the effects of the endothelium-dependent vasodilators acetylcholine, A23187 and bradykinin, were not influenced by pregnancy. Similarly, pregnancy did not affect the vasodilator responses of adenosine, isoproterenol, capsaicin, nitroprusside, forskolin, and Hoe234 in the mesenteric bed. NO synthase activity measured by determining the conversion of L−[3H]-arginine to L−[3H]-citrulline in aorta and mesenteric arteries homogenates was not altered by pregnancy. These findings show that endothelial-dependent and -independent vasodilators action as well as NO synthase activity in systemic arteries is uninfluenced by pregnancy, whereas pregnancy-associated hyporeactivity of systemic arteries to vasoconstrictors is related to an enhanced endothelial NO production either spontaneous or elicited directly or indirectly by vasoconstrictor agents. This interpretation implies that the enhanced NO production observed in systemic arteries during late pregnancy involves cellular pathways other than the ones involved in the response to endothelium-dependent vasodilators such as acetylcholine.  相似文献   

8.

Aims

Portal hypertension characterized by generalized vasodilatation with endothelial dysfunction affecting nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) has been suggested to involve bacterial translocation and/or the angiotensin system. The possibility that ingestion of probiotics prevents endothelial dysfunction in rats following common bile duct ligation (CBDL) was evaluated.

Methods

Rats received either control drinking water or the probiotic VSL#3 solution (50 billion bacteria.kg body wt−1.day−1) for 7 weeks. After 3 weeks, rats underwent surgery with either resection of the common bile duct or sham surgery. The reactivity of mesenteric artery rings was assessed in organ chambers, expression of proteins by immunofluorescence and Western blot analysis, oxidative stress using dihydroethidium, and plasma pro-inflammatory cytokine levels by flow cytometry.

Results

Both NO- and EDH-mediated relaxations to acetylcholine were reduced in the CBDL group compared to the sham group, and associated with a reduced expression of Cx37, Cx40, Cx43, IKCa and SKCa and an increased expression of endothelial NO synthase (eNOS). In aortic sections, increased expression of NADPH oxidase subunits, angiotensin converting enzyme, AT1 receptors and angiotensin II, and formation of ROS and peroxynitrite were observed. VSL#3 prevented the deleterious effect of CBDL on EDH-mediated relaxations, vascular expression of connexins, IKCa, SKCa and eNOS, oxidative stress, and the angiotensin system. VSL#3 prevented the CBDL-induced increased plasma TNF-α, IL-1α and MCP-1 levels.

Conclusions

These findings indicate that VSL#3 ingestion prevents endothelial dysfunction in the mesenteric artery of CBDL rats, and this effect is associated with an improved vascular oxidative stress most likely by reducing bacterial translocation and the local angiotensin system.  相似文献   

9.
Choto-san is a formula used for the treatment of headache and vertigo. Recently it has often also been used for hypertension and dementia. One of the mechanisms involved is thought to be the improvement of blood circulation, but the details are still unclear. In this study, the effect of Chotosan was studied on nitric oxide (NO) function, hemorheological factors and endothelial function in stroke-prone spontaneously hypertensive rats (SHR-SP). Rats were given Choto-san in drinking water for eight weeks. Body weight, blood pressure, serum NO2-/NO3-, lipid peroxides, blood viscosity, erythrocyte deformability and endothelium-dependent/-independent relaxation were measured. The results indicated that Choto-san caused a decrease in blood pressure and an increase in erythrocyte deformability and NO function. Blood viscosity was not changed. Furthermore, endothelium-dependent relaxation by acetylcholine was significantly increased as compared to control. In this study, it was supposed that Choto-san had a protective effect on the endothelium. SHR-SP is a useful model for human brain stroke, and Choto-san showed a protective effect against cerebral vascular injury in the susceptible rat.  相似文献   

10.
Red wine polyphenols (RWPs) have been reported to exert beneficial effects in preventing cardiovascular diseases, such as hypertension. We studied the effects of chronic treatment with RWPs and apocynin, an inhibitor of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, on blood pressure, endothelial function, and oxidative status in deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Rats were administered RWPs (40 mg/kg) or apocynin (33 microg/kg) daily by gavage for 5 weeks. Plasma catechin levels were detected only after RWP treatment. RWPs and apocynin prevented both the increase in systolic blood pressure and the proteinuria induced by DOCA-salt. Plasma malonyldialdehyde levels, urinary iso-prostaglandin F(2alpha) excretion, aortic superoxide production, and aortic NADPH oxidase activity were found to be increased in animals of the DOCA group. RWP and apocynin treatments reduced these parameters in DOCA-salt rats, having no effect on control rats. However, only RWPs reduced the increase in plasma endothelin-1 (ET-1) levels and aortic p22(phox) gene overexpression found in DOCA-salt animals. RWPs and apocynin also improved the blunted endothelium-dependent relaxation response to acetylcholine in noradrenaline-precontracted aortic rings. All these results suggest that chronic treatment with RWPs prevents hypertension and vascular dysfunction. RWPs prevent vascular oxidative stress by inhibiting NADPH oxidase activity and/or by reducing ET-1 release.  相似文献   

11.
The aims of the present study were to analyse the effects of an oral daily dose (10 mg/kg) of the dietary flavonoid quercetin for five weeks in two-kidney, one-clip (2K1C) Goldblatt (GB) hypertensive rats. The evolution of systolic blood pressure was followed by weekly measurements, and morphological variables, proteinuria, plasma nitrates plus nitrites (NOx) and thiobarbituric acid reactive substances (TBARS), liver oxidative stress markers and endothelial function were determined at the end of the experimental period. Quercetin treatment reduced systolic blood pressure of GB rats, producing no effect in control animals. It also reduced cardiac hypertrophy and proteinuria developed in GB hypertensive rats. Decreased endothelium-dependent relaxation to acetylcholine of aortic rings from GB rats was improved by chronic quercetin treatment, as well as increased endothelium-dependent vasoconstrictor response to acetylcholine and overproduction of TXB2 by aortic vessels of GB rats, being without effect in normotensive animals. Increased plasma NOx and TBARS, and decreased liver total glutathione (GSH) levels and glutathione peroxidase (GPX) activity were observed in GB hypertensive rats compared to the control animals. Normalisation of plasma NOx and TBARS concentrations and improvement of the antioxidant defences system in liver accompanied the antihypertensive effect of quercetin. We conclude that chronic oral treatment with quercetin shows both antihypertensive and antioxidant effects in this model of renovascular hypertension. (Mol Cell Biochem 270: 147–155, 2005)M.F. García-Saura and M. Galisteo are equal contributors to this work  相似文献   

12.
Jack AM  Keegan A  Cotter MA  Cameron NE 《Life sciences》2002,71(16):1863-1877
Diabetes causes endothelial dysfunction, with deleterious effects on nitric oxide (NO) mediated vasodilatation. However, in many vessels other local vasodilators such as endothelium-derived hyperpolarizing factor (EDHF), prostacyclin, epoxides or endocannabinoids are also important. Several of these factors may be derived from omega-6 essential fatty acids via arachidonate metabolism. Diabetes inhibits this pathway, a defect that may be bypassed by diets enriched with omega-6 gamma-linolenic acid-containing oils such as evening primrose oil (EPO). The aim was to examine the effects of preventive EPO treatment on endothelium-dependent and neurally mediated vasorelaxation. Diabetes was induced by streptozotocin in rats; duration was 8 weeks. Vascular responses were examined in vitro on thoracic aorta, corpus cavernosum and perfused mesenteric bed preparations. Diabetes caused 25% and 35% deficits, respectively, in aorta and corpus cavernosum NO-mediated endothelium-dependent relaxation to acetylcholine that were largely unaffected by EPO treatment. Moreover, a 44% reduction in maximum corpus cavernosum vasorelaxation to nitrergic nerve stimulation was not prevented by EPO. However, for the mesenteric vascular bed, a 29% diminution of responses to acetylcholine, mediated by both NO and EDHF, was 84% attenuated by EPO treatment. When the EDHF component was isolated during NO synthase inhibition, a 76% diabetic deficit was noted. This was completely prevented by EPO treatment, which also caused supernormal EDHF responses in nondiabetic rats. EPO treatment prevented the development of deficits in endothelium-dependent relaxation in diabetic rats. Effects were particularly marked on the resistance vessel EDHF system, which may have potential therapeutic relevance for diabetic microvascular complications.  相似文献   

13.
Vascular tissues express heme oxygenase (HO), which metabolizes heme to form carbon monoxide (CO). Heme-derived CO inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. After 4 wk of high-salt diet, Dahl salt-sensitive (Dahl-S) rats display hypertension, increased vascular HO-1 expression, and attenuated vasodilator responses to ACh that can be completely restored by acute treatment with an inhibitor of HO. In this study, we examined the temporal development of HO-mediated endothelial dysfunction in isolated pressurized first-order gracilis muscle arterioles, identified the HO product responsible, and studied the blood pressure effects of HO inhibition in Dahl-S rats on a high-salt diet. Male Dahl-S rats (5-6 wk) were placed on high-salt (8% NaCl) or low-salt (0.3% NaCl) diets for 0-4 wk. Blood pressure increased gradually, and responses to an endothelium-dependent vasodilator, ACh, decreased gradually with the length of high-salt diet. Flow-induced dilation was abolished in hypertensive Dahl-S rats. Acute in vitro pretreatment with an inhibitor of HO, chromium mesoporphyrin (CrMP), restored endothelium-dependent vasodilation and abolished the differences between groups. The HO product CO prevented the restoration of endothelium-dependent dilation by CrMP. Furthermore, administration of an HO inhibitor lowered blood pressure in Dahl-S rats with salt-induced hypertension but did not do so in low-salt control rats. These results suggest that hypertension and HO-mediated endothelial dysfunction develop gradually and simultaneously in Dahl-S rats on high-salt diets. They also suggest that HO-derived CO underlies the impaired endothelial dysfunction and contributes to hypertension in Dahl-S rats on high-salt diets.  相似文献   

14.
We aimed to characterize circulating microparticles in association with arterial stiffness, inflammation and endothelial dysfunction in aldosterone-salt-induced hypertension in rats and to investigate the preventive effects of red wine polyphenols. Uninephrectomized male Sprague-Dawley rats were treated with aldosterone-salt (1 µg.h−1), with or without administration of either red wine polyphenols, Provinols™ (20 mg.kg−1.day−1), or spironolactone (30 mg.kg−1.day−1) for 4 weeks. Microparticles, arterial stiffness, nitric oxide (NO) spin trapping, and mesenteric arterial function were measured. Aldosterone-salt rats showed increased microparticle levels, including those originating from platelets, endothelium and erythrocytes. Hypertension resulted in enhanced aortic stiffness accompanied by increased circulating and aortic NO levels and an upregulation of aortic inducible NO-synthase, NFκB, superoxide anions and nitrotyrosine. Flow-induced dilatation was reduced in mesenteric arteries. These effects were prevented by spironolactone. Provinols™ did not reduce arterial stiffness or systolic hypertension but had effects similar to those of spironolactone on endothelial function assessed by flow-mediated vasodilatation, microparticle generation, aortic NO levels and oxidative stress and apoptosis in the vessel wall. Neither the contractile response nor endothelium-dependent relaxation in mesenteric arteries differed between groups. The in vivo effects of Provinols™ were not mediated by mineralocorticoid receptors or changes in shear stress. In conclusion, vascular remodelling and endothelial dysfunction in aldosterone-salt-mediated hypertension are associated with increased circulating microparticles. Polyphenols prevent the enhanced release of microparticles, macrovascular inflammation and oxidative stress, and microvascular endothelial dysfunction independently of blood pressure, shear stress and mineralocorticoid receptor activation in a model of hyperaldosteronism.  相似文献   

15.
In vitro evidence suggests that resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation are mediated by changes in vascular smooth muscle concentrations of guanosine 3',5'-cyclic monophosphate (cGMP). We investigated this hypothesis in vivo in 19 mechanically ventilated intact lambs by determining the hemodynamic effects of methylene blue (a guanylate cyclase inhibitor) and then by comparing the hemodynamic response to five vasodilators during pulmonary hypertension induced by the infusion of U-46619 (a thromboxane A2 mimic) or methylene blue. Methylene blue caused a significant time-dependent increase in pulmonary arterial pressure. During U-46619 infusions, acetylcholine, ATP-MgCl2, sodium nitroprusside, isoproterenol, and 8-bromo-cGMP decreased pulmonary arterial pressure. During methylene blue infusions, the decreases in pulmonary arterial pressure caused by acetylcholine and ATP-MgCl2 (endothelium-dependent vasodilators) and sodium nitroprusside (an endothelium-independent guanylate cyclase-dependent vasodilator) were attenuated by greater than 50%. The decreases in pulmonary arterial pressure caused by isoproterenol and 8-bromo-cGMP (endothelium-independent vasodilators) were unchanged. This study in intact lambs supports the in vitro evidence that changes in vascular smooth muscle cell concentrations of cGMP in part mediate resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation.  相似文献   

16.

Introduction

Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats.

Methods and Results

Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness.

Conclusion

Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.  相似文献   

17.
Lee SK  Kim HS  Song YJ  Joo HK  Lee JY  Lee KH  Cho EJ  Cho CH  Park JB  Jeon BH 《FEBS letters》2008,582(17):2561-2566
To examine the role of p66shc in endothelial dysfunction, we investigated the endothelium-dependent relaxation, protein expression and superoxide production in abdominal aortic coarctation rats. Endothelium-dependent relaxation to acetylcholine was impaired only in the aortic segments above the aortic coarctation (35.0+/-7.1% vs. 86.6+/-6.0% for sham control at 1 microM Ach). The aortic segments exposed to increased blood pressure showed a decreased phosphorylation of endothelial nitric oxide synthase, an increased phosphorylation of p66shc, and an increased superoxide production. Angiotensin II elicited a significantly increased phosphorylation of p66shc in the endothelial cells. Taken together, these findings suggest that the increased phosphorylation of p66shc is one of the important mediators in the impaired endothelium-dependent relaxation of aortic coarctation rats.  相似文献   

18.
Aging is associated with a markedly increased incidence of cardiovascular diseases due, in part, to the development of vascular endothelial dysfunction. The present study has evaluated whether the Crataegus special extract WS(?)1442 prevents the development of aging-related endothelial dysfunction in rats, and, if so, to determine the underlying mechanisms. Wistar rats received either a control diet or the same diet containing 100 or 300 mg/kg/day of WS(?)1442 from week 25 until week 65. Vascular reactivity was assessed in mesenteric artery rings using organ chambers, oxidative stress by dihydroethidine staining and cyclooxygenase-1 (COX-1) and -2 (COX-2) expression by immunohistochemistry. Acetylcholine-induced endothelium-dependent relaxations in mesenteric artery rings were blunted in 65-week-old rats compared to 16-week-old rats. This effect was associated with a marked reduction of the endothelium-derived hyperpolarizing factor (EDHF) component whereas the nitric oxide (NO) component was not affected. Aging was also associated with the induction of endothelium-dependent contractile responses to acetylcholine. Both aging-related impairment of endothelium-dependent relaxations and the induction of endothelium-dependent contractile responses were improved by the Crataegus treatment and by COX inhibitors. An excessive vascular oxidative stress and an upregulation of COX-1 and COX-2 were observed in the mesenteric artery of old rats compared to young rats, and these effects were improved by the Crataegus treatment. In conclusion, chronic intake of Crataegus prevented aging-related endothelial dysfunction by reducing the prostanoid-mediated contractile responses, most likely by improving the increased oxidative stress and the overexpression of COX-1 and COX-2.  相似文献   

19.
The effect of sex hormones on vascular reactivity is considered one of the underlying factors contributing to gender differences in cardiovascular functions and diseases. Experiments were designed to investigate the role of androgens in salt-induced hypertension by assessing the relaxation response of isolated aortic rings to acetylcholine and sodium nitroprusside in the presence or absence of l-nitroarginine methyl ester in Sprague-Dawley rats. The rats were either orchidectomized or sham-operated, with or without testosterone replacement, and were placed on a normal or high-salt diet for 6?weeks. The results indicate a significant increase (p?< 0.001) in the mean arterial blood pressure of rats on the high-salt diet, when compared with control or orchidectomized rats. Orchidectomy elicited a reduction in mean arterial blood pressure (p?< 0.01), while testosterone replacement normalized mean arterial blood pressure to values seen in intact rats on the high-salt diet. The high-salt diet reduced the relaxation response to acetylcholine both in the presence and absence of inhibition of endothelial nitric oxide synthase with l-nitroarginine methyl ester. Bilateral orchidectomy attenuated the impaired endothelial function induced by the high-salt diet in rats, but this was reversed by concomitant administration of testosterone, suggesting a role for androgens in enhancing long-term vascular smooth muscle tone and hence maintenance of high blood pressure in salt-induced hypertension.  相似文献   

20.
目的:研究肾上腺髓质素2(ADM2)拮抗血管紧张素Ⅱ(AngⅡ)发挥舒张血管的作用及机制。方法:将18只180~200 g雄性SD大鼠随机分为3组(n=6):对照组、AngⅡ(150 ng/(kg·min))组和AngⅡ(150 ng/(kg·min))+ADM2(500 ng/(kg·h))组,采用皮下埋植微量渗透泵的方法给药。2周后颈动脉插管法测量大鼠血压,测定血浆一氧化氮(NO)含量和内皮型一氧化氮合酶(eNOS)活性。DHE染色法检测大鼠动脉壁活性氧产生。制备大鼠离体血管环,观察ADM2的舒血管作用。培养人脐静脉内皮细胞系EA.hy 926,用DCFH-DA荧光探针检测AngⅡ和ADM2对血管内皮细胞活性氧释放的影响。结果:与AngⅡ组相比,ADM2显著降低了大鼠血压,血浆中eNOS活性提高、NO含量增加,血管壁活性氧产生减少。ADM2呈浓度依赖性和内皮依赖性舒张血管环,并明显抑制了AngⅡ引起的血管内皮细胞活性氧产生。结论:ADM2可能通过拮抗AngⅡ诱导的血管内皮氧化应激效应,改善内皮功能,发挥舒张血管、降低血压的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号