首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geographic isolation is known to contribute to divergent evolution, resulting in unique phenotypes. Oftentimes morphologically distinct populations are found to be interfertile while reproductive isolation is found to exist within nominal morphological species revealing the existence of cryptic species. These disparities can be difficult to predict or explain especially when they do not reflect an inferred history of common ancestry which suggests that environmental factors affect the nature of ecological divergence. A series of laboratory experiments and observational studies were used to address what role biogeographic factors may play in the ecological divergence of Hyalella amphipods. It was found that geographic isolation plays a key role in the evolution of reproductive isolation and divergent morphology and that divergence cannot be explained by molecular genetic variation.  相似文献   

2.
The Pacific iguanas of the Fijian and Tongan archipelagos are a biogeographic enigma in that their closest relatives are found only in the New World. They currently comprise two genera and four species of extinct and extant taxa. The two extant species, Brachylophus fasciatus from Fiji, Tonga, and Vanuatu and Brachylophus vitiensis from western Fiji, are of considerable conservation concern with B. vitiensis listed as critically endangered. A recent molecular study has shown that Brachylophus comprised three evolutionarily significant units. To test these conclusions and to reevaluate the phylogenetic and biogeographic relationships within Brachylophus, we generated an mtDNA dataset consisting of 1462 base pairs for 61 individuals from 13 islands, representing both Brachylophus species. Unweighted parsimony analyses and Bayesian analyses produced a well-resolved phylogenetic hypothesis supported by high bootstrap values and posterior probabilities within Brachylophus. Our data reject the monophyly of specimens previously believed to comprise B. fasciatus. Instead, our data demonstrate that living Brachylophus comprise three robust and well-supported clades that do not correspond to current taxonomy. One of these clades comprises B. fasciatus from the Lau group of Fiji and Tonga (type locality for B. fasciatus), while a second comprises putative B. fasciatus from the central regions of Fiji, which we refer to here as B. n. sp. Animals in this clade form the sister group to B. vitiensis rather than other B. fasciatus. We herein describe this clade as a new species of Brachylophus based on molecular and morphological data. With only one exception, every island is home to one or more unique haplotypes. We discuss alternative biogeographic hypotheses to explain their distribution in the Pacific and the difficulties of distinguishing these. Together, our molecular and taxonomic results have important implications for future conservation initiatives for the Pacific iguanas.  相似文献   

3.
Range limits and secondary contact zones often occur at ecotones between major associations of habitat and climate. Therefore, understanding processes that limit sympatry between species in such areas provides an important framework for testing biogeographic and evolutionary hypotheses. Theoretical and empirical work has shown that the evolution of species borders is influenced by a complexity of factors, including gene flow from central to peripheral populations and the ability of species to adapt locally to environmental conditions. However, few studies have used bioclimatic models, combined with molecular and morphological data, to predict geographic range limits in the context of gene flow across a secondary contact zone. In this study, I applied these methods to test specific hypotheses about barriers to sympatry between closely related species where they approach and contact each other. Specifically, I examined the importance of historical isolation, local adaptation, and symmetry of gene flow in limiting sympatry and range expansion of ecologically distinct species across environmental gradients. Molecular (mitochondrial DNA, allozymes), morphological, and bioclimatic data were obtained for two avian sibling species (Baeolophus inornatus and B. ridgwayi) that exist in recent, narrow secondary contact in northern California. These species are broadly allopatric and occupy rangewide associations of oak and pinyon-juniper woodlands, respectively, although B. inornatus also inhabits mixed or juniper woodlands locally. Patterns of molecular variation generally were congruent with morphological and bioclimatic data, and support prior evidence for a history of isolation, adaptation, and divergence in distinctive, species-specific vegetation-climate associations. However, molecular and morphological clines fall east of the limit of oaks, and individuals of B. inornatus in this juniper-associated contact zone experience bioclimates that are more similar to B. ridgwayi than to B. inornatus in oak habitat. Thus, B. inornatus is able to adapt and expand locally into the range of its close relative, but not vice versa. These data support the hypothesis that gene flow is asymmetrical where peripheral populations meet at range boundaries. Physiological differences between species may play an important role in influencing these patterns. Empirical studies that highlight the importance of local adaptation and patterns of gene flow in which closely related species contact across ecotones are central to understanding limits on geographic ranges, sympatry, and introgression-a cornerstone of biogeographic and speciation theory.  相似文献   

4.
The Seychelles is a remarkably interesting archipelago for evolutionary studies, but only recently have molecular markers been used to explore its biogeographic patterns. Here we used morphological and molecular data to examine diversity and phylogenetic relationships of two endemic skink sister‐species from this archipelago: Trachylepis sechellensis and Trachylepis wrightii. Mitochondrial DNA genealogy rendered a monophyletic T. wrightii nested within a paraphyletic T. sechellensis, whereas nuclear DNA sequences from five unlinked markers reflected the accepted taxonomy. Hybridization and massive mtDNA introgression leading to the complete replacement of the native mtDNA lineage of T. sechellensis in some of the islands were invoked to explain this result, and morphological variation also seemed to reflect this pattern of reticulation. A Mio‐Pliocene divergence between both species is suggested. Multilocus molecular data were used to uncover biogeographic patterns within the archipelago, which reflected shared patterns with other co‐distributed lizard taxa; specifically a north–south marked structure, a close relationship between populations from Fregate and the southern islands, and a detectable isolation within the southern group, between Mahé, and Silhouette and North Islands. Gene flow from these latter islands towards the northern group was also suggested. These results add to the growing body of evidence of the influence of geographic distance and sea‐level oscillations in shaping the genetic structure of Seychellois taxa and of the existence of common biogeographic patterns across the archipelago.  相似文献   

5.
We surveyed mitochondrial DNA (mtDNA) sequence variation in short-horned lizards (Phrynosoma douglasi) from throughout western North America and used these data to estimate an intraspecific phylogeny and to assess biogeographic scenarios underlying the geographic structure of lineages in this species. We sequenced 783 base pairs from 38 populations of P. douglasi and three putative outgroups (P. ditmarsi, P. orbiculare, P. platyrhinos). We detected high levels of nucleotide variation among populations and a spatial distribution of mtDNA lineages compatible with major geographic regions. The phylogenetic hypotheses best supported by the data suggest that P. douglasi, as currently described, is paraphyletic with respect to P. ditmarsi. Populations of P. douglasi from the Pacific Northwest (ID, CA, OR, WA) form a monophyletic group that is sister to the subsequent radiation of P. ditmarsi and other P. douglasi clades. These results suggest that divergences within this widespread species are fairly old. We focused on the genetic structure of populations of P. douglasi from a geographic perspective and interpreted the intraspecific phylogeny in light of geologic and climatic changes in western North America during the last 20 million years. The generally high levels of genetic variation found in these population comparisons are in accord with high levels of morphological variation in this species group; however, only in the Pacific Northwest region is there spatial congruence between these phylogenetic results and subspecific ranges based on previous morphological studies. We compared the evolutionary units delineated in this study with previously described subspecies of P. douglasi and evaluated the support (from morphology and mtDNA) for each population lineage in the phylogeny and the implications for the taxonomy of this group.  相似文献   

6.
Well-supported, congruent phylogeographic and biogeographic patterns permit the development of a priori phylogeographic and distributional predictions. In the southeastern Coastal Plain of the United States, the common discovery of east-west disjunctions (phylogeographic breaks and species' distributional boundaries) suggests that similar disjunctions should occur in codistributed taxa. Despite the near ubiquity of these disjunctions, the most recent morphological analyses of the flatwoods salamander, Ambystoma cingulatum, indicate that none occur in this low-vagility, Coastal Plain endemic. We conducted molecular and morphological analyses to test whether the flatwoods salamander is an exception to this common biogeographic pattern. Assessing geographic variation in this species is also an important management tool for this threatened, declining amphibian. We demonstrate that flatwoods salamanders, as predicted by comparisons to codistributed taxa, are polytypic with a major disjunction at the Apalachicola River. This drainage is a common site for east-west phylogeographic breaks, probably because repeated marine embayments during the Pliocene and Pleistocene interglacials generated barriers to gene flow. Based on mitochondrial DNA, morphology, and allozymes, we recognize two species of flatwoods salamanders -- Ambystoma cingulatum to the east of the Apalachicola drainage and Ambystoma bishopi to the west. Given this increased diversity, the conservation status of these two taxa may warrant re-evaluation. More generally, these results emphasize that in the absence of taxon-specific data, established comparative patterns can provide strong expectations for designing management units for unstudied species of conservation concern.  相似文献   

7.
The genus Pangio is one of the most species-rich of the loach family Cobitidae and widespread across South and Southeast Asia. Its species diversity has never been studied under a clear phylogenetic approach, but four 'species-groups' were proposed according to the most obvious morphological characters. We present here phylogenetic analyses of the genus Pangio based on sequence data of the mitochondrial cytochrome b gene, the nuclear recombination-activating gene 1 (RAG 1) and a combined dataset of 109 specimens from 18 morphologically identified species across the whole distribution area of the genus. Our data reveal the existence of three major lineages within Pangio. Two of our major lineages were congruent with formerly proposed species-groups, the remaining two species-groups together formed the third major lineage; herein we refer to the lineages as to anguillaris-group, kuhlii-oblonga group and shelfordii-group. The application of a molecular clock dated the age of the three lineages to 33-29 million years. At the species level, our data suggest about 30 distinct lineages, indicating that there is a high number of undescribed species within Pangio. The use of Pangio to address biogeographic questions is demonstrated with the example of the shelfordii-group, which is distributed across Sundaland.  相似文献   

8.
9.
New specimens of Acomys spinosissimus from northern Malawi and southern Tanzania were subjected to morphological, molecular (cytochrome b mitochondrial gene) and cytogenetical analysis in order to establish the phylogenetic position of these populations among A. spinosissimus, as well as their relationships with other species (A. subspinosus and A. wilsoni). The monophyly of the spinosissimus clade is supported by morphological and molecular phylogenies. Cytogenetics and morphology, but not the cytochrome b phylogeny show the possible existence of two sibling species within spinosissimus. Incongruences are noted between molecular and morphological trees, especially concerning the position of the Transvaal specimens. Two different biogeographic scenarios for the origin and dispersal of A. spinosissimus are discussed in the light of available palaeontological data.  相似文献   

10.
Understanding the biogeographic and phylogenetic basis to interspecific differences in species’ functional traits is a central goal of evolutionary biology and community ecology. We quantify the extent of phylogenetic influence on functional traits and life‐history strategies of Australian freshwater fish to highlight intercontinental differences as a result of Australia's unique biogeographic and evolutionary history. We assembled data on life history, morphological and ecological traits from published sources for 194 Australian freshwater species. Interspecific variation among species could be described by a specialist–generalist gradient of variation in life‐history strategies associated with spawning frequency, fecundity and spawning migration. In general, Australian fish showed an affinity for life‐history strategies that maximise fitness in hydrologically unpredictable environments. We also observed differences in trait lability between and within life history, morphological and ecological traits where in general morphological and ecological traits were more labile. Our results showed that life‐history strategies are relatively evolutionarily labile and species have potentially evolved or colonised in freshwaters frequently and independently allowing them to maximise population performance in a range of environments. In addition, reproductive guild membership showed strong phylogenetic constraint indicating that evolutionary history is an important component influencing the range and distribution of reproductive strategies in extant species assemblages. For Australian freshwater fish, biogeographic and phylogenetic history contribute to broad taxonomic differences in species functional traits, while finer scale ecological processes contribute to interspecific differences in smaller taxonomic units. These results suggest that the lability or phylogenetic relatedness of different functional traits affects their suitability for testing hypothesis surrounding community level responses to environmental change.  相似文献   

11.
The phylogeny of morphologically simple algae is problematic due to insufficient morphological characters to aid in distinguishing species and relationships. The problem is further compounded because multiple evolutionary lineages of morphologically similar species occur in most well‐sampled biogeographic locations; therefore, location cannot be used as a proxy for species. The phylogeny of the upright members of the Erythropeltidales is partially clarified by combining molecular data, unialgal culture observations, and worldwide sampling. Our results show that there are several well‐supported lineages within the Erythropeltidales with only two morphologically recognizable taxa at present. The first is the genus Porphyrostromium, with a well‐developed basal crust, which includes two Erythrotrichia species (Porphyrostromium ligulatum comb. nov. and Porphyrostromium pulvinatum comb. nov.). The second is the branched species Erythrotrichia welwitschii (Rupr.) Batters. There are also six strongly supported Erythrotrichia carnea–like lineages. While not completely satisfactory, we propose that one lineage (lineage 2) with samples close to the type locality be designated as E. carnea with a specific isolate as an epitype. The lack of morphology to differentiate the other lineages leads to a taxonomy based solely on gene sequencing and molecular phylogeny, with rbcL sequences differentiating the lineages proposed. We hold off on proposing more species and genera until more data and samples can be gathered.  相似文献   

12.
According to the integrative taxonomy (IT) framework, delimitation of taxonomic specimens into bona fide species requires the incorporation of multiple sources of biological evidence that jointly perform a role as systematic criteria. Here, we collected a combination of geographic, morphological (qualitative and quantitative), and molecular data sets from a group of specimens in the Ceratozamia miqueliana species complex. We analyzed them under methods suitable for each of these partitions and then synthesized results under the taxonomic circle—i.e., an operational tool for inference in IT. Taxonomic circle-based species delimitations in this Ceratozamia species complex have downstream taxonomic-nomenclatural consequences given that morphometric affinity between these specimens does not allow their species-level identification. However, joint patterns of qualitative morphological (i.e., diagnostics in standard sense) and molecular (i.e., character-based, DNA diagnostic or “bar coding”) characters between the species suggest the following scenarios: (1) C. miqueliana is a morphologically diagnosable species that lacks DNA diagnostics; (2) Ceratozamia subroseophylla is diagnosable both in terms of morphological and molecular evidence and sympatric with C. miqueliana; (3) Ceratozamia euryphyllidia is diagnosable both in morphological and molecular terms; (4) Ceratozamia zoquorum and Ceratozamia santillanii are cryptic species, i.e., both have exclusive DNA diagnostics but are not diagnosable morphologically; and (5) Ceratozamia becerrae is not diagnosable by any criterion and should therefore fall in synonymy. The present work contributes to establish a robust platform for subsequent systematic assessments of Mexican cycad diversity, which could include new hypotheses on the evolutionary processes involved in their current biogeographic distribution, ecological relationships, and other life-history aspects, in turn useful for conservation biology concerns.  相似文献   

13.
The Italian peninsula is a biodiversity hotspot, with its freshwater fish fauna characterized by high levels of local endemism. Two endemic fluvio‐lacustrine fishes of the genus Barbus (barbel, family Cyprinidae) have allopatric distributions in the Tyrrhenian and Adriatic basins of Italy. Barbus plebejus inhabits the mid‐ to northern Adriatic basins, while B. tyberinus is widespread in all central‐northern basins draining into the Tyrrhenian Sea. For basins in Southern Italy draining into the southern parts of these seas, there remains a knowledge gap on their barbel populations due to no previous genetic and morphological studies, despite their apparent biogeographic isolation. Correspondingly, this study quantified the presence and distribution of barbels in the Adriatic and Tyrrhenian basins of Southern Italy through genetic and morphological analyses of 197 fish sampled across eight populations. Testing of how local isolation has influenced the evolution and persistence of these populations was completed by examining sequence variation at two mitochondrial loci (cytochrome b and D‐loop) and performing geometric morphometric analyses of body shape, plus measuring 11 morphometric and meristic characters. Phylogenetic and morphological analyses revealed the presence of two genetically distinct lineages that differed significantly from adjacent B. tyberinus and B. plebejus populations. These two new taxa, here described as SI1 and SI2 Barbus lineages, are highly structured and reflect a complex mosaic biogeographic pattern that is strongly associated with the underlying hydrographical scenarios of the basins. The geographic isolation of these basins thus has high evolutionary importance that has to be considered for maintaining endemism.  相似文献   

14.
15.
The land planarian genus Choeradoplana (Plathelminthes, Tricladida) is currently integrated by 13 species. In previous works, morphological variation in its type species, Choeradoplana iheringi, was reported, but no attempt to test whether it is just a single species has been made yet. In order to disentangle the taxonomy of this species and further members of the genus, we sampled new specimens and combined morphological and molecular data and also have evaluated the performance of diverse methods of molecular species delimitation. Our data point to the presence of two cryptic species named C. iheringi, plus two new species, all hidden under the same general appearance. An in-depth morphological study of the specimens allowed detection of diagnostic morphological traits in each species, for which we also propose a molecular diagnosis. This integrative taxonomic study demonstrates once again the usefulness of molecular tools to weigh minor morphological characteristics and thus reveal the existence of species that would otherwise remain cryptic. However, under certain parameters, the molecular methods may over-split species with a high genetic structure, maybe pointing to incipient speciation. This makes critical the use of these methods combined with a comprehensive morphological approach. We also present a comprehensive phylogenetic tree including most Choeradoplana species. The tree, well supported, allows making some preliminary inferences on the evolution of the group and its historical biogeography.  相似文献   

16.
Spatial patterns of genetic diversity provide insight into the demography and history of species. Morphologically similar but genetically distinct “cryptic” species are increasingly being recognized in marine organisms through molecular analyses. Such species are, on closer inspection, often discovered to display contrasting life histories or occasionally minor morphological differences; molecular tools can thus be useful indicators of diversity. Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern Hemisphere and comprises many cryptic species. We used mitochondrial cytochrome c oxidase I gene sequences to assess the genetic variation, population genetic structure, and demographic history of B. intricata in New Zealand. Our results supported the existence of three cryptic species of B. intricata (N2, N4, and N5) in New Zealand. Cryptic species N4, which was found throughout New Zealand, showed a higher genetic diversity and wider distribution than the other two species, which were only found in the North Island and northern South Island. Our analyses showed low to moderate genetic differentiation among eastern North Island populations for cryptic species N2, but high differentiation among North and South Island populations for N4, suggesting different population structure between these cryptic species. Data also indicated that N2 has recently undergone population expansion, probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 populations suggests persistence in situ through the LGM. The contrasting population structures and inferred demographic histories of these species highlight that life history can vary greatly even among morphologically indistinguishable taxa.  相似文献   

17.
Combining biogeographic, ecological, morphological, molecular and chemical data, we document departure from strict specialization in the fig-pollinating wasp mutualism. We show that the pollinating wasps Elisabethiella stuckenbergi and Elisabethiella socotrensis form a species complex of five lineages in East and Southern Africa. Up to two morphologically distinct lineages were found to co-occur locally in the southern African region. Wasps belonging to a single lineage were frequently the main regional pollinators of several Ficus species. In South Africa, two sister lineages, E. stuckenbergi and E. socotrensis, pollinate Ficus natalensis but only E. stuckenbergi also regularly pollinates Ficus burkei. The two wasp species co-occur in individual trees of F. natalensis throughout KwaZulu-Natal. Floral volatile blends emitted by F. natalensis in KwaZulu-Natal were similar to those emitted by F. burkei and different from those produced by other African Ficus species. The fig odour similarity suggests evolutionary convergence to attract particular wasp species. The observed pattern may result from selection for pollinator sharing among Ficus species. Such a process, with one wasp species regionally pollinating several hosts, but several wasp species pollinating a given Ficus species across its geographical range could play an important role in the evolutionary dynamics of the Ficus-pollinating wasp association.  相似文献   

18.
Monomorium is a large and diverse ant genus with speciose radiations in both the Afrotropical and Australian regions. According to the most recent taxonomic revision, many Australian species are characterised by very broad distributions and variable morphology, which suggests that some species may be unrecognised species complexes. With a continent‐wide distribution and diverse yet overlapping morphology, M. rothsteini (Forel) is representative of the greater challenge that exists in Australian Monomorium systematics. Here we investigate species boundaries in M. rothsteini using a molecular phylogenetic framework to interpret the complex overlap of nine morphological characters (with 31 states) and examine biogeographic relationships among the lineages. Bayesian inference resolved 38 mtDNA lineages that were morphologically separable, at least from their sister lineage. Although the morphological characters were intermixed across the phylogeny, instances of inseparable morphology among sister clades was rare. Seventeen lineages exhibited complete morphological overlap with one or more other lineages and could not be separated by Principal Component Analysis based on 12 morphometric variables. Two‐thirds of all lineages occurred sympatrically with one or more both genetically and morphologically divergent lineages. The two nuclear markers EF1αF2 and wingless were used to generate haplotype networks which were characterised by a star‐like pattern indicative of a rapid and recent radiation. Several haplotypes for both nuclear gene regions were shared among individuals occurring in separate mtDNA clades which we were also unable to distinguish morphologically or that were occurring in sympatry, indicating possible introgression in both the mtDNA and nuclear genomes. Clear biogeographic affinities among samples within a lineage were detected but there was no overall pattern in the biogeographic relationships among the lineages. We conclude that M. rothsteini is a large species complex that has undergone a complex evolutionary history following aridification of the Australian continent, and discuss the implications of this conclusion for the systematics of Australian Monomorium more generally.  相似文献   

19.
Blue sheep, Pseudois nayaur, is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest‐elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis. However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois. Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.  相似文献   

20.
Specimens of Starksia were collected throughout the western Atlantic, and a 650-bp portion of the mitochondrial gene cytochrome oxidase-c subunit I (COl) was sequenced as part of a re-analysis of species diversity of western Central Atlantic shorefishes. A neighbor-joining tree constructed from the sequence data suggests the existence of several cryptic species. Voucher specimens from each genetically distinct lineage and color photographs of vouchers taken prior to dissection and preservation were examined for diagnostic morphological characters. The results suggest that Starksia atlantica, Starksia lepicoelia, and Starksia sluiteri are species complexes, and each comprises three or more species. Seven new species are described. DNA data usually support morphological features, but some incongruence between genetic and morphological data exists. Genetic lineages are only recognized as species if supported by morphology. Genetic lineages within western Atlantic Starksia generally correspond to geography, such that members of each species complex have a very restricted geographical distribution. Increasing geographical coverage of sampling locations will almost certainly increase the number of Starksia species and species complexes recognized in the western Atlantic. Combining molecular and morphological investigations is bringing clarity to the taxonomy of many genera of morphologically similar fishes and increasing the number of currently recognized species. Future phylogenetic studies should help resolve species relationships and shed light on patterns of speciation in western Atlantic Starksia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号