首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The P2X7 receptor, mainly expressed by immune cells, is a ionotropic receptor activated by high concentration of extracellular ATP. It is involved in several processes relevant to immunomodulation and inflammation. Among these processes, the production of extracellular interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, plays a major role in the activation of the cytokine network. We have investigated the role of P2X7 receptor and of an associated calcium-activated potassium conductance (BK channels) in IL-1beta maturation and releasing processes by Schwann cells. Lipopolysaccharide-primed Schwann cells synthesized large amounts of pro-IL-1beta but did not release detectable amounts of pro or mature IL-1beta. ATP on its own had no effect on the synthesis of pro-IL-1beta, but a co-treatment with lipopolysaccharide and ATP led to the maturation and the release of IL-1beta by Schwann cells. Both mechanisms were blocked by oxidized ATP. IL-1beta-converting enzyme (ICE), the caspase responsible for the maturation of pro-IL-1beta in IL-1beta, was activated by P2X7 receptor stimulation. The specific inhibition of ICE by the caspase inhibitor Ac-Tyr-Val-Ala-Asp-aldehyde blocked the maturation of IL-1beta. In searching for a link between the P2X7 receptor and the activation of ICE, we found that enhancing potassium efflux from Schwann cells upregulated the production of IL-1beta, while strongly reducing potassium efflux led to opposite effects. Blocking BK channels actually modulated IL-1beta release. Taken together, these results show that P2X7 receptor stimulation and associated BK channels, through the activation of ICE, leads to the maturation and the release of IL-1beta by immune-challenged Schwann cells.  相似文献   

2.
3.
Caspase-9 can be activated without proteolytic processing   总被引:25,自引:0,他引:25  
The recombinant form of the proapoptotic caspase-9 purified following expression in Escherichia coli is processed at Asp315, but largely inactive; however, when added to cytosolic extracts of human 293 cells it is activated 2000-fold in the presence of cytochrome c and dATP. Thus, the characteristic activities of caspase-9 are context-dependent, and its activation may not recapitulate conventional caspase activation mechanisms. To explore this hypothesis we produced recombinant forms of procaspase-9 containing mutations that disabled one or both of the interdomain processing sites of the zymogen. These mutants were able to activate downstream caspases, but only in the presence of cytosolic factors. The mutant with both processing sites abolished had 10% of the activity of wild-type, and was able to support apoptosis, with equal vigor to wild-type, when transiently expressed in 293 cells. Thus caspase-9 has an unusually active zymogen that does not require proteolytic processing, but instead is dependent on cytosolic factors for expression of its activity.  相似文献   

4.
In general, apoptotic stimuli lead to activation of caspases. Once activated, a caspase can induce intracellular signaling pathways involving proteolytic activation of other caspase family members. We report the in vitro processing of eight murine procaspases by their enzymatically active counterparts. Caspase-8 processed all procaspases examined. Caspase-1 and -11 processed the effector caspases procaspase-3 and -7, and to a lesser extent procaspase-6. However, vice versa, none of the caspase-1-like procaspases was activated by the effector caspases. This suggests that the caspase-1 subfamily members either act upstream of the apoptosis effector caspases or else are part of a totally separate activation pathway. Procaspase-2 was maturated by caspase-8 and -3, and to a lesser extent by caspase-7, while the active caspase-2 did not process any of the procaspases examined, except its own precursor. Hence, caspase-2 might not be able to initiate a wide proteolytic signaling cascade. Additionally, cleavage data reveal not only proteolytic amplification between caspase-3 and -8, caspase-6 and -3, and caspase-6 and -7, but also positive feedback loops involving multiple activated caspases. Our results suggest the existence of a hierarchic proteolytic procaspase activation network, which would lead to a dramatic increase in multiple caspase activities once key caspases are activated. The proteolytic procaspase activation network might allow that different apoptotic stimuli result in specific cleavage of substrates responsible for typical processes at the cell membrane, the cytosol, the organelles, and the nucleus, which characterize a cell dying by apoptosis.  相似文献   

5.
ProIL-1 beta processing by IL-1 beta-converting enzyme (ICE) and the subsequent release of mature IL-1 beta are highly regulated events in the monocyte/macrophage response to pathogens. This process occurs in a controlled way through the activation of the constitutively expressed 45-kDa ICE precursor (proICE). To characterize the signaling pathways involved in ICE regulation in human monocytes/macrophages, we analyzed ICE activation in the presence of specific inhibitors of classic signaling pathways. Although LPS-induced ICE activity was not significantly affected by interruption of extracellular signal-regulated kinase, p38 kinase, or phosphoinositol 3-kinase, Janus kinase 3 (JAK3) inhibition produced a significant dose-dependent enhancement of LPS-induced ICE activity. Support for the inhibitory role of JAK3 was shown by the fact that IL-4 (which uses JAK1 and JAK3 signaling) suppressed LPS-induced ICE activity and by the finding that JAK3 knockout macrophages have increased LPS-induced ICE activation. To understand how JAK3 down-regulates LPS-induced ICE activity in monocytes, we hypothesized that JAK3 signaling enhances IL-10 production. In support of this model we show that LPS-induced IL-10 expression was synchronous with ICE deactivation, IL-4 induced the release of IL-10, exogenous IL-10 suppressed LPS-induced ICE activity, a neutralizing IL-10 Ab increased LPS-induced ICE activity, and, finally, JAK3 knockout macrophages displayed significantly reduced LPS-induced IL-10 production. These findings support a model in which JAK3 signaling enhances IL-10 production leading to down-regulation of ICE activation and suppression of IL-1 beta processing and release.  相似文献   

6.
We studied the effect of T cells on IL-18 production by human monocytes in response to Mycobacterium tuberculosis. Addition of activated T cells markedly enhanced IL-18 production by monocytes exposed to M. tuberculosis. This effect was mediated by a soluble factor and did not require cell-to-cell contact. The effect of activated T cells was mimicked by recombinant IFN-gamma and was abrogated by neutralizing Abs to IFN-gamma. IFN-gamma also enhanced the capacity of alveolar macrophages to produce IL-18 in response to M. tuberculosis, suggesting that this mechanism also operates in the lung during mycobacterial infection. IFN-gamma increased IL-18 production by increasing cleavage of pro-IL-18 to mature IL-18, as it enhanced caspase-1 activity but did not increase IL-18 mRNA expression. These findings suggest that activated T cells can contribute to the initial immune response by augmenting IL-18 production by monocytes in response to an intracellular pathogen.  相似文献   

7.
The aspartate-specific cysteine protease caspase-1 is activated by the inflammasomes and is responsible for the proteolytic maturation of the cytokines IL-1 beta and IL-18 during infection and inflammation. To discover new caspase-1 substrates, we made use of a proteome-wide gel-free differential peptide sorting methodology that allows unambiguous localization of the processing site in addition to identification of the substrate. Of the 1022 proteins that were identified, 20 were found to be specifically cleaved after Asp in the setup incubated with recombinant caspase-1. Interestingly, caspase-7 emerged as one of the identified caspase-1 substrates. Moreover half of the other identified cleavage events occurred at sites closely resembling the consensus caspase-7 recognition sequence DEVD, suggesting caspase-1-mediated activation of endogenous caspase-7 in this setup. Consistently recombinant caspase-1 cleaved caspase-7 at the canonical activation sites Asp(23) and Asp(198), and recombinant caspase-7 processed a subset of the identified substrates. In vivo, caspase-7 activation was observed in conditions known to induce activation of caspase-1, including Salmonella infection and microbial stimuli combined with ATP. Interestingly Salmonella- and lipopolysaccharide + ATP-induced activation of caspase-7 was abolished in macrophages deficient in caspase-1, the pattern recognition receptors Ipaf and Cryopyrin, and the inflammasome adaptor ASC, demonstrating an upstream role for the caspase-1 inflammasomes in caspase-7 activation in vivo. In contrast, caspase-1 and the inflammasomes were not required for caspase-3 activation. In conclusion, we identified 20 new substrates activated downstream of caspase-1 and validated caspase-1-mediated caspase-7 activation in vitro and in knock-out macrophages. These results demonstrate for the first time the existence of a nucleotide binding and oligomerization domain-like receptor/caspase-1/caspase-7 cascade and the existence of distinct activation mechanisms for caspase-3 and -7 in response to microbial stimuli and bacterial infection.  相似文献   

8.
Interleukin (IL)-1beta and IL-18 are structurally similar proteins that require caspase-1 processing for activation. Both proteins are released from the cytosol by unknown pathway(s). To better characterize the release pathway(s) for IL-1beta and IL-18 we evaluated the role of lipopolysaccharide priming, of interleukin-1beta-converting enzyme (ICE) inhibition, of human purinergic receptor (P2X(7)) function, and of signaling pathways in human monocytes induced by ATP. Monocytes rapidly processed and released both IL-1beta and IL-18 after exogenous ATP. Despite its constitutive cytosolic presence, IL-18 required lipopolysaccharide priming for the ATP-induced release. Neither IL-1beta nor IL-18 release was prevented by ICE inhibition, and IL-18 release was not induced by ICE activation itself. Release of both cytokines was blocked completely by a P2X7 receptor antagonist, oxidized ATP, and partially by an antibody to P2X(7) receptor. In evaluating the signaling components involved in the ATP effect, we identified that the protein-tyrosine kinase inhibitor, AG126, produced a profound inhibition of both ICE activation as well as release of IL-1beta/IL-18. Taken together, these results suggest that, although synthesis of IL-1beta and IL-18 differ, ATP-mediated release of both cytokines requires a priming step but not proteolytically functional caspase-1.  相似文献   

9.
BACKGROUND: Previous work has shown that teratogens such as hyperthermia (HS), 4-hydroperoxycyclophosphamide (4CP), and staurosporine (ST) induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway. Key to the activation of this pathway is the activation of a caspase cascade involving the cleavage-induced activation of an initiator procaspase, caspase-9, and the downstream effector procaspase, caspase-3. For example, procaspase-3, an inactive proenzyme of 32 kDa is cleaved by activated caspase-9 to generate a large subunit of approximately 17 kDa and a small subunit of approximately 10 kDa. In turn, caspase-3 is known to target a variety of cellular proteins for proteolytic cleavage as part of the process by which dying cells are eliminated. Previous work has also shown that neuroepithelial cells are sensitive to teratogen-induced activation of this pathway and subsequent cell death whereas cells of the heart are resistant. Although caspase-3 is a key effector caspase activated by teratogens, two other effector caspases, caspase-6 and caspase-7, are known; however, their role in teratogen-induced cell death is unknown. METHODS: Because cleavage-induced generation of specific subunits is the most specific assay for activation of caspases, we have used antibodies that recognize the procaspase and one of its active subunits and a Western blot approach to assess the activation of caspase-6 and caspase-7 in day 9 mouse embryos (or heads, hearts and trunks isolated from whole embryos) exposed to HS, 4CP, and ST. To probe the relationship between teratogen-induced activation of caspase-9/caspase-3 and the activation of caspase-6/caspase-7, we used a mitochondrial-free embryo lysate with or without the addition of cytochrome c, recombinant active caspase-3, or recombinant active caspase-9. RESULTS: Western blot analyses show that these three teratogens, HS, 4CP, and ST, induce the activation of procaspase-6 (appearance of the 13 kDa subunit, p13) and caspase-7 (appearance of the 19 kDa subunit, p19) in day 9 mouse embryos. In vitro studies showed that both caspase-6 and caspase-7 could be activated by the addition of cytochrome c to a lysate prepared from untreated embryos. In addition, caspase-6 could be activated by the addition of either recombinant caspase-3 or caspase-9 to a lysate prepared from untreated embryos. In contrast, caspase-7 could be activated by addition of recombinant caspase-3 but only minimally by recombinant caspase-9. Like caspase-9/caspase-3, caspase-6 and caspase-7 were not activated in hearts isolated from embryos exposed to these three teratogens. CONCLUSIONS: HS, 4CP and ST induce the cleavage-dependent activation of caspase-6 and caspase-7 in day 9 mouse embryos. Results using DEVD-CHO, a caspase-3 inhibitor, suggest that teratogen-induced activation of caspase-6 is mediated by caspase-3. In addition, our data suggest that caspase-7 is activated primarily by caspase-3; however, we cannot rule out the possibility that this caspase is also activated by caspase-9. Finally, we also show that teratogen-induced activation of caspase-6 and caspase-7 are blocked in the heart, a tissue resistant to teratogen-induced cell death.  相似文献   

10.
11.
Liu B  Novick D  Kim SH  Rubinstein M 《Cytokine》2000,12(10):1519-1525
Interleukin (IL-)18 is an activator of NK cells and a co-inducer of Th(1)cytokines, sharing structural features with the IL-1 family of proteins. Unlike most other cytokines, IL-18 and IL-1beta lack a signal peptide, have an all beta-pleated sheet structure and are synthesized as biologically inactive precursors (pro-IL-18 and pro-IL-1beta). These precursors are cleaved by caspase-1 (IL-1beta-converting enzyme, ICE) to form the biologically active mature cytokines. Direct expression of mature recombinant human IL-18 in E. coli resulted in a partially active cytokine. We tested the possibility that correct folding of huIL-18 requires its prior synthesis as pro-IL-18. Because caspase-1 is not readily available, we constructed an expression vector encoding human pro-IL-18 in which the caspase-1 cleavage site was mutated into a factor Xa site. To facilitate purification, the mutated pro-IL-18 cDNA was fused in frame to a glutathione-S-transferase (GST) coding sequence. The GST-pro-IL-18 fusion protein was expressed in E. coli, captured on glutathione agarose and mature human IL-18, exhibiting high biological activity was released upon cleavage with factor Xa. This result indicates that correct folding of huIL-18 occurs at the level of pro-IL-18 and provides a practical way to produce biologically active huIL-18.  相似文献   

12.
Caspase-1 is a cysteine protease composed by two 20-kDa and two 10-kDa subunits that processes pro-IL-1beta and pro-IL-18 to their mature forms. This enzyme is present in cells as a latent zymogen that becomes active through a tightly regulated proteolytic cascade. Activation is initiated by the oligomerization of an adaptor molecule, or by the formation of a multiprotein complex named inflammasome. Negative regulation of caspase-1 activation is exerted by proteins that compete with the adaptor molecule or with the inflammasome formation. We previously reported that fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, increases caspase-1 activity in PBMC. This effect was strengthened by Mycobacterium tuberculosis, rending an exacerbated IL-1beta, IL-18, and IFN-gamma production. Mevalonate, the product of 3-hydroxy-3-methylglutaryl coenzyme A reductase, is a precursor for both nonsterol isoprenoid and sterol formation. In this study, we studied the involvement of mevalonate derivatives in the regulation of caspase-1 activation. Inhibition of sterol formation by SKF-104976 or haloperidol had no effect on IL-1beta release. However, the isoprenoid geranylgeraniol prevented both caspase-1 activation and the exacerbated IL production induced by fluvastatin. This isoprenoid significantly reduced the release of IL-18 and IFN-gamma by PBMC treated with mycobacteria, even in the absence of fluvastatin. In correlation with the increased caspase-1 activity, fluvastatin stimulated the proforms cleavage, enhancing the formation of active subunit p10. Geranylgeraniol not only prevented this effect, but induced proforms accumulation. Present results suggest that, once the proteolytic cascade is initiated, geranylgeraniol may exert an additional negative regulation on caspase-1 cleavage process.  相似文献   

13.
Mammalian IL-1beta is produced as a biologically inactive 31 kDa precursor, which is converted to the active 18 kDa form by proteolytic processing. Synthesis and processing of native piscine IL-1beta is poorly understood. In the present study, the native IL-1beta precursor or mature peptides were detected at sizes of approx. 29 kDa and 24 kDa in cell lysates of a rainbow trout macrophage cell line RTS-11, with or without LPS stimulation, by Western blot analysis using a polyclonal antibody against the putative trout mature IL-1beta (rmIL-1beta) produced in Escherichia coli. Processing of the 29 kDa precursor into a 24 kDa mature peptide was confirmed by analysis of such proteins using a monoclonal conjugate (Ni-NTA-HRP) against 6 histidines in lysates of the RTS-11 cells transfected with an expression plasmid containing the IL-1beta precursor molecule tagged with 6 histidines at its C terminus. Only the recombinant mature 24 kDa) IL-1beta/HIS protein was purified from the culture supernatants of the transfected cells, indicating the molecule is cleaved to be secreted. These findings strongly suggest that the trout IL-1beta molecule is processed in trout macrophages in an analogous way to the situation with mammalian IL-1beta despite the lack of a clear ICE cut site.  相似文献   

14.
Caspase-1 is an inflammatory caspase that controls the activation and secretion of the inflammatory cytokines, IL-1beta and IL-18. We observed that cellular levels of retinoic acid-inducible gene-I (RIG-I) were enhanced when the pan-caspase inhibitor Z-VAD-fmk or caspase-1-specific inhibitor Z-WEHD-fmk blocked caspase activity. Overexpression of caspase-1 reduced cellular levels of RIG-I and inhibited RIG-I-mediated signaling activity. Enzymatic activity of caspase-1 was necessary to control RIG-I, although it was not a substrate of proteolytic cleavage by caspase-1. Caspase-1 physically interacted with full length RIG-I, but not with mutant forms lacking either the amino- or carboxyl-terminal domains. RIG-I was present in the supernatant of cells transfected with active caspase-1 but not with caspase-4. Stimulating cells with LPS and ATP also induced secretion of endogenous RIG-I in macrophages. Our data suggest a novel mechanism that negatively regulates RIG-I-mediated signaling activity via caspase-1-dependent secretion of RIG-I protein.  相似文献   

15.
16.
CTLL cells undergo apoptosis when cultured in the absence of IL-2. The IL-1-converting-enzyme (ICE)/ caspase family has been implicated as an integral component of some forms of apoptosis. Numerous members of the caspase family have been identified, and it appears as if caspase-3/CPP32 plays a critical role. Previously we demonstrated that ICE/caspase-1 expression increases in CTLL cells during apoptosis; however, inhibition of ICE activity did not abrogate apoptotic death. The purpose of this report is to determine if other members of the caspase family are involved in T cell apoptosis induced by growth factor starvation. We show that cytosolic CPP32-like activity, as measured by the cleavage of DEVD-pNA and poly(ADP-ribose) polymerase (PARP), increases during apoptosis following growth factor deprivation. Cytosolic CPP32-like activity is inhibited in cells treated with the broad spectrum ICE family inhibitor boc-aspartyl(OMe)-fluoromethylketone (D-FMK) and by VAD-FMK and DEVD-FMK which have greater specificity for CPP32-like ICE homologs; however, only the broad spectrum ICE inhibitor D-FMK inhibited apoptosis. Our results suggest that apoptosis induced by growth factor deprivation involves the caspase family, but increased CPP32-like activity is not sufficient to mediate apoptosis induced by IL-2 starvation.  相似文献   

17.
Renal tubular cell apoptosis is a significant component of obstruction-induced renal injury, and it results in a progressive loss in renal parenchymal mass during renal obstruction. Although IL-18 is an important mediator of inflammatory renal disease and renal fibrosis, its role in obstruction-induced renal tubular cell apoptosis remains unclear. To study this, male C57BL6 wild-type mice and C57BL6 mice transgenic for human IL-18-binding protein (IL-18BP Tg) were subjected to renal obstruction vs. sham operation. The kidneys were harvested after 1 or 2 wk and analyzed for IL-18 production, apoptosis, caspase activity, and Fas/Fas Ligand (FasL) expression. HK-2 cells were similarly analyzed for apoptosis and proapoptotic signaling following 3 days of direct exposure to IL-18 vs. control media. Renal obstruction induced a significant increase in IL-18 production, renal tubular cell apoptosis, caspase activation, and FasL expression. IL-18 neutralization, on the other hand, significantly reduced obstruction-induced apoptosis, caspase-8 and caspase-3 activity, and FasL expression. In vitro experiments similarly demonstrate that IL-18 stimulation induces apoptosis, FasL expression, and increases active caspase-8 and caspase-3 expression in a dose-dependent fashion. siRNA knockdown of FasL gene expression, however, significantly reduced IL-18-induced apoptosis. This study reveals that IL-18 is a significant mediator of obstruction-induced tubular cell apoptosis, and it demonstrates that IL-18 stimulates proapoptotic signaling through a FasL-dependent mechanism.  相似文献   

18.
Proteases of the caspase family are thought to be activated by proteolytic processing of their inactive zymogens. However, although proteolytic cleavage is sufficient for executioner caspases, a different mechanism has been recently proposed for initiator caspases, such as caspase-8, which are believed to be activated by proximity-induced dimerization. According to this model, dimerization rather than proteolytic processing is considered as the critical event for caspase-8 activation. Such a mechanism would suggest that in the absence of a dimerization platform such as the death-inducing signaling complex, caspase-8 proteolytic cleavage would result in an inactive enzyme. As several studies have described caspase-8 cleavage during mitochondrial apoptosis, we now investigated whether caspase-8 becomes indeed catalytically active in this pathway. Using an in vivo affinity labeling approach, we demonstrate that caspase-8 is activated in etoposide-treated cells in vivo in the absence of the receptor-induced death-inducing signaling complex formation. Furthermore, we show that both caspase-3 and -6 are required for the efficient activation of caspase-8. Our data therefore indicate that interchain cleavage of caspase-8 in the mitochondrial pathway is sufficient to produce an active enzyme even in the absence of receptor-driven procaspase-8 dimerization.  相似文献   

19.
Heavy membrane preparations from 697 lymphoblastoid cells contain a tightly bound caspase zymogen. This heavy membrane-bound procaspase can be efficiently liberated from membrane preparations using detergents. Alternatively, the procaspase can be rapidly processed and activated from membrane preparations by caspase-1 without detergents. The activated caspase-3 was purified using affinity chromatography and characterized by amino acid sequencing and inhibitor specificity analysis. The sequence indicates that this heavy membrane bound caspase is caspase-3. The kinetic properties and inhibitor binding specificity also show that this purified caspase is enzymologically indistinguishable from cytoplasmic or recombinant caspase-3. However, the N-termini of activated heavy membrane-bound and cytoplasmic caspase-3 are slightly different; peptide sequencing data indicate that the heavy membrane caspase-3 begins at Lys 14, whereas the cytoplasmic enzyme begins at Ser 10. Implications of this structural difference are discussed.  相似文献   

20.
The activation of caspase-3 represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Upon induction of apoptosis, the large (p17) and small (p12) subunits, comprising active caspase-3, are generated via proteolytic processing of a latent proenzyme dimer. Two copies of each individual subunit are generated to form an active heterotetramer. The tetrameric form of caspase-3 cleaves specific protein substrates within the cell, thereby producing the apoptotic phenotype. In contrast to the proenzyme, once activated in HeLa cells, caspase-3 is difficult to detect due to its rapid degradation. Interestingly, however, enzyme stability and therefore detection of active caspase-3 by immunoblot analysis can be restored by treatment of cells with a peptide-based caspase-3 selective inhibitor, suggesting that the active form can be stabilized through protein-inhibitor interaction. The heteromeric active enzyme complex is necessary for its stabilization by inhibitors, as expression of the large subunit alone is not stabilized by the presence of inhibitors. Our results show for the first time, that synthetic caspase inhibitors not only block caspase activity, but may also increase the stability of otherwise rapidly degraded mature caspase complexes. Consistent with these findings, experiments with a catalytically inactive mutant of caspase-3 show that rapid turnover is dependent on the activity of the mature enzyme. Furthermore, turnover of otherwise stable active site mutants of capase-3 is rescued by the presence of the active enzyme suggesting that turnover can be mediated in trans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号