首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Genetic maps for individual Pinus elliottii var. elliottii and P. caribaea var. hondurensis trees were generated using a pseudo-testcross mapping strategy. A total of 329 amplified fragment length polymorphic (AFLP) and 12 microsatellite markers were found to segregate in a sample of 93 interspecfic F(1) progeny. The male P. caribaea var. hondurensis parent was more heterozygous than the female P. elliottii var. elliottii parent with 19% more markers segregating on the male side. Framework maps were constructed using a LOD 5 threshold for grouping and interval support threshold of LOD 2. The framework map length for the P. elliottii var. elliottii megagametophyte parent (1,170 cM Kosambi; 23 linkage groups) was notably smaller than the P. caribaea var. hondurensis pollen parent (1,658 cM Kosambi; 27 linkage groups). The difference in map lengths was assumed to be due to sex-related recombination variation, which has been previously reported for pines, as the difference in map lengths not be accounted for by the larger number of markers mapping to the P. caribaea var. hondurensis parent - 109 compared with 78 in P. elliottii var. elliottii parent. Based on estimated genome sizes for these species, the framework maps for P. elliottii var. elliottii and P. caribaea var. hondurensis covered 82% and 88% of their respective genomes. The pseudo-testcross strategy was extended to include AFLP and microsatellite markers in an intercross configuration. These comprehensive maps provided further genome coverage, 1,548 and 1,828 cM Kosambi for P. elliottii var. elliottii and P. caribaea var. hondurensis, respectively, and enabled homologous linkage groups to be identified in the two parental maps. Homologous linkage groups were identified for 11 out of 24 P. elliottii var. elliottii and 10 out of 25 P. caribaea var. hondurensis groups. A higher than expected level of segregation distortion was found for both AFLP and microsatellite markers. An explanation for this segregation distortion was not clear, but it may be at least in part due to genetic mechanisms for species isolation in this wide cross.  相似文献   

2.
Random amplified polymorphic DNAs(RAPDs) were used to construct linkage maps of the parents of a Populus adenopoda Maxim. x P. alba L. Fl family. A set of 620 random oligonucleotide primers were screened and 128 primers were selected to generate RAPD markers within a sample of 80 Fl progenies. A total of 333 segregating loci [ (326( 1:1 ) ,7(3:1 ) ] were identified. Among the 326 1:1 segregating loci (238 loci from P. adenopoda and 88 loci from P. dba),36 loci (26 loci in P. adenopoda and 10 loci in P. dba) were found distorted from the normal 1:1 ratio. Altogether 290 loci segregating 1:1 (testcross configuration) were used to construct parent-specific linkage maps,212 for P. alba and 78 for P. adenopoda. The resulting linkage maps consisted of 189 marker loci in 20 groups (four or more loci per group), 6 triples and 16 pairs for P. dba, which cover the map distance about 2 402.4 cM, and 41 linked marker loci for P. adenopoda which cover map distance about 479.4 cM. Further study is warranted to locate some important quantitative trait loci (QTLs) based on the maps.  相似文献   

3.
We have constructed nearly complete linkage maps of Pinus sylvestris (L.) using AFLP markers based on a two-way pseudo-testcross strategy in a full-sib family founded in an advanced breeding program. With 39 primer combinations, a total of 737 markers (320 from the mother and 417 from the father) segregated in a 1:1 ratio, corresponding to DNA polymorphism: heterozygous in one parent and null in the other. In the maternal parent, 188 framework markers were mapped in 12 linkage groups, equivalent to the Pinus haploid chromosome number, with a total coverage of 1,695.5 cM. In the paternal parent, 245 framework markers established a map with 15 linkage groups, spanning a genome length of 1,718.5 cM. The estimated total map length was L(F) = 1,681 cM for the female and L(M) = 1,645 cM for the male using a modified method-of-moment estimator. Combining these values with those estimated from the observed map lengths in both parents, we estimated the genome length in Scots pine to be between 1,600 and 2,100 cM. Our genome coverage was estimated to be more than 98% with a framework marker interval of 20 cM for both parents. Most of the female and male linkage groups were associated through the analysis of the intercross markers.  相似文献   

4.
Amplified fragment length polymorphism (AFLP) is an efficient molecular technique for generating a large number of DNA-based genetic markers in Populus. We have constructed an integrated genetic map for a Populus backcross population derived from two selected P. deltoides clones using AFLP markers. A traditional strategy for genetic mapping in outcrossing species, such as forest trees, is based on two-way pseudo-testcross configurations of the markers (testcross markers) heterozygous in one parent and null in the other. By using the markers segregating in both parents (intercross markers) as bridges, the two parent-specific genetic maps can be aligned. In this study, we detected a number of non-parental heteroduplex markers resulting from the PCR amplification of two DNA segments that have a high degree of homology to one another but differ in their nucleotide sequences. These heteroduplex markers detected have served as bridges to generate an integrated map which includes 19 major linkage groups equal to the Populus haploid chromosome number and 24 minor groups. The 19 major linkage groups cover a total of 2,927 cM, with an average spacing between two markers of 23. 3 cM. The map developed in this study provides a first step in producing a highly saturated linkage map of the Populus deltoides genome. Received: 10 September 1999 / Accepted: 3 November 1999  相似文献   

5.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

6.
Based on an F1 progeny of 73 individuals, two parental maps were constructed according to the double pseudo-test cross strategy. The paternal map contained 16 linkage groups for a total genetic length of 1,792 cM. The maternal map covered 1,920 cM, and consisted of 12 linkage groups. These parental maps were then integrated using 66 intercross markers. The resulting consensus map covered 2,035 cM and included 755 markers (661 AFLPs, 74 SSRs, 18 ESTPs, the 5S rDNA and the early cone formation trait) on 12 linkage groups, reflecting the haploid number of chromosomes of Picea abies. The average spacing between two adjacent markers was 2.6 cM. The presence of 39 of the SSR and/or ESTP markers from this consensus map on other published maps of different Picea and Pinus species allowed us to establish partial linkage group homologies across three P. abies maps (up to five common markers per linkage group). This first saturated linkage map of P. abies could be therefore used as a support for developing comparative genome mapping in conifers.Communicated by O. Savolainen  相似文献   

7.
Among the genus Populus, the sections Populus (white poplar), Aigeiros Duby (black poplar) and Tacamahaca Spach contain many tree species of economical and ecological important properties. Two parental maps for the inter-specific hybrid population of Populus adenopoda × P. alba (two species of Populus section) were constructed based on SSR and SRAP markers by means of a two-way pseudo-test cross mapping strategy. The same set of SSR markers developed from the P. trichocarpa (belonging to Tacamahaca section) genome which were used to construct the maps of P. deltoides and P. euramericana (two species of Aigeiros section) was chosen to analyze the genotype of the experimental population of P. adenopoda × P. alba. Using the mapped SSR markers as allelic bridges, the alignment of the white and black poplar maps to each other and to the P. trichocarpa physical map was conducted. The alignment showed high degree of marker synteny and colinearity and the closer relationship between Aigeiros and Tacamahaca sections than that of Populus and Tacamahaca. Moreover, there was evidence for the chromosomal duplication and inter-chromosomal reorganization involving some poplar linkage groups, suggesting a complicated course of fission or fusion in one of the lineages. A poplar consensus map based on the comparisons could be constructed will be useful in practical applications including marker assisted selection.  相似文献   

8.
D. Grattapaglia  R. Sederoff 《Genetics》1994,137(4):1121-1137
We have used a ``two-way pseudo-testcross' mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many single-dose RAPD markers will be heterozygous in one parent, null in the other and therefore segregate 1:1 in their F(1) progeny following a testcross configuration. Meiosis and gametic segregation in each individual can be directly and efficiently analyzed using RAPD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, θ = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) (n = 11 in Eucalyptus). Framework maps ordered with a likelihood support >/=1000:1 were assembled covering 95% of the estimated genome size in both individuals. Characterization of genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage maps for any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexually reproducing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficient at the intraspecific level and increasingly so with crosses of genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps in any forest species opens the way for a shift from the paradigm of a species index map to the heterodox proposal of constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.  相似文献   

9.
A genetic linkage map of the tetraploid white yam (Dioscorea rotundata Poir.) was constructed based on 341 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 mapping population was produced by crossing a landrace cultivar TDr 93-1 as female parent to a breeding line TDr 87/00211 as the male parent. The marker segregation data were split into maternal and paternal data sets, and separate genetic linkage maps were constructed since the mapping population was an F1 cross between two presumed heterozygous parents. The markers segregated like a diploid cross-pollinator population suggesting that the D. rotundata genome is an allo-tetraploid (2n = 4x = 40). The maternal map comprised 155 markers mapped on 12 linkage groups with a total map length of 891 cM. Three linkage groups consisted of maternal parent markers only. The paternal map consisted of 157 markers mapped on 13 linkage groups with a total map length of 852 cM. Three and one quantitative trait loci (QTLs) with effects on resistance to Yam Mosaic Virus (YMV) were identified on the maternal and paternal linkage maps, respectively. Prospects for detecting more QTLs and using marker-assisted selection in white yam breeding appear good, but this is subject to the identification of additional molecular markers to cover more of the genome.  相似文献   

10.
A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.  相似文献   

11.
A single cross between two clones of passion fruit (Passiflora edulis Sims. f. flavicarpa Deg., 2n = 18) was selected for genetic mapping. The mapping population was composed of 90 F1 plants derived from a cross between 'IAPAR 123' (female parent) and 'IAPAR 06' (male parent). A total of 380 RAPD primers were analyzed according to two-way pseudo-testcross mapping design. The linkage analysis was performed using Mapmaker version 3.0 with LOD 4.0 and a maximum recombination fraction (theta) of 0.30. Map distances were estimated using the Kosambi mapping function. Linkage maps were constructed with 269 loci (2.38 markers/primer), of which 255 segregated 1:1, corresponding to a heterozygous state in one parent and null in the other. The linkage map for 'IAPAR123' consisted of 135 markers. A total of nine linkage groups were assembled covering 727.7 cM, with an average distance of 11.20 cM between framework loci. The sizes of the linkage groups ranged from 56 to 144.6 cM. The linkage map for 'IAPAR 06' consisted of 96 markers, covering 783.5 cM. The average distance between framework loci was 12.2 cM. The length of the nine linkage groups ranged from 20.6 to 144.2 cM. On average, both maps provided 61% genome coverage. Twenty-four loci (8.9%) remained unlinked. Among their many applications, these maps are a starting point for the identification of quantitative trait loci for resistance to the main bacterial disease affecting passion fruit orchards in Brazil, caused by Xanthomonas campestris pv. passiflorae, because parental genotypes exhibit diverse responses to bacterial inoculation.  相似文献   

12.
Genetic linkage maps have been increasingly developed for a wide variety of plants, using segregating populations such as F2s or backcrosses between inbred lines. These pedigrees are rarely available in outbred species like forest trees which have long generation times. Thus genetic mapping studies have to use peculiar pedigrees and markers in appropriate configurations. We constructed single-tree genetic linkage maps of European larch (Larix decidua Mill.) and Japanese larch [Larix kaempferi (Lamb.) Carr.] using segregation data from 112 progeny individuals of an hybrid family. A total of 266 markers (114 AFLP, 149 RAPD and 3 ISSR loci) showing a testcross configuration, i.e.heterozygous in one parent and null in the other parent, were grouped at LOD 4.0, θ=0.3. The maternal parent map (L. decidua)consisted of 117 markers partitioned within 17 linkage groups (1152 cM) and the paternal parent map (L. kaempferi) had 125 markers assembled into 21 linkage groups (1206 cM). The map distance covered by markers was determined by adding a 34.7-cM independence distance at the end of each group and unlinked marker. It reached 2537 cM and 2997 cM respectively for European larch and Japanese larch, and represented respectively a 79.6% and 80.8% coverage of the overall genome. A few 3:1 segregating markers were used to identify homologous linkage groups between the European larch and the Japanese larch genetic maps. The PCR-based molecular markers allowed the construction of genetic maps, thus ensuring a good coverage of the larch genome for further QTL detection and mapping studies. Received: 15 March 1999 / Accepted: 29 March 1999  相似文献   

13.
The aim of the present work was to develop a microsatellite marker-based map of the Vitis vinifera genome (n=19), useful for genetic studies in this perennial heterozygous species, as SSR markers are highly transferable co-dominant markers. A total of 346 primer pairs were tested on the two parents (Syrah and Grenache) of a full sib population of 96 individuals (S × G population), successfully amplifying 310 markers. Of these, 88.4% markers were heterozygous for at least one of the two parents. A total of 292 primer pairs were then tested on Riesling, the parent of the RS1 population derived from selfing (96 individuals), successfully amplifying 299 markers among which 207 (62.9%) were heterozygous. Only 6.7% of the markers were homozygous in all three genotypes, stressing the interest of such markers in grape genetics. Four maps were constructed based on the segregation of 245 SSR markers in the two populations. The Syrah map was constructed from the segregations of 177 markers that could be ordered into 19 linkage groups (total length 1,172.2 cM). The Grenache map was constructed with the segregations of 178 markers that could be ordered into 18 linkage groups (total length 1,360.6 cM). The consensus S × G map was constructed with the segregations of 220 markers that were ordered into 19 linkage groups (total length 1,406.1 cM). One hundred and eleven markers were scored on the RS1 population, among them 27 that were not mapped using the S × G map. Out of these 111 markers, 110 allowed to us to construct a map of a total length of 1,191.7 cM. Using these four maps, the genome length of V. vinifera was estimated to be around 2,200 cM. The present work allowed us to map 123 new SSR markers on the V. vinifera genome that had not been ordered in a previous SSR-based map (Riaz et al. 2004), representing an average of 6.5 new markers per linkage group. Any new SSR marker mapped is of great potential usefulness for many applications such as the transfer of well-scattered markers to other maps for QTL detection, the use of markers in specific regions for the fine mapping of genes/QTL, or for the choice of markers for MAS.  相似文献   

14.
A molecular genetic map of cassava (Manihot esculenta Crantz)   总被引:12,自引:0,他引:12  
 A genetic linkage map of cassava has been constructed with 132 RFLPs, 30 RAPDs, 3 microsatellites, and 3 isoenzyme markers segregating from the heterozygous female parent of an intraspecific cross. The F1 cross was made between ‘TMS 30572’ and ‘CM 2177-2’, elite cassava cultivars from Nigeria and Colombia, respectively. The map consists of 20 linkage groups spanning 931.6 cM or an estimated 60% of the cassava genome. Average marker density is 1 per 7.9 cM. Since the mapping population is an F1 cross between heterozygous parents, with unique alleles segregating from either parent, a second map was constructed from the segregation of 107 RFLPs, 50 RAPDs, 1 microsatellite, and 1 isoenzyme marker from the male parent. Comparison of intervals in the male-and female-derived maps, bounded by markers heterozygous in both parents, revealed significantly less meiotic recombination in the gametes of the female than in the male parent. Six pairs of duplicated loci were detected by low-copy genomic and cDNA sequences used as probes. Efforts are underway to saturate the cassava map with additional markers, to join the male- and female-derived maps, and to elucidate genome organization in cassava. Received: 5 July 1996/Accepted: 22 November 1996  相似文献   

15.
The first linkage map of the olive (Olea europaea L.) genome has been constructed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphisms (AFLP) as dominant markers and a few restriction fragment length polymorphisms (RFLP) and simple-sequence repeats (SSR) as codominant markers. Ninety-five individuals of a cross progeny derived from two highly heterozygous olive cultivars, Leccino and Dolce Agogia, were used by applying the pseudo test-cross strategy. From 61 RAPD primers 279 markers were obtained - 158 were scored for Leccino and 121 for Dolce Agogia. Twenty-one AFLP primer combinations gave 304 useful markers - 160 heterozygous in Leccino and 144 heterozygous in Dolce Agogia. In the Leccino map 249 markers (110 RAPD, 127 AFLP, 8 RFLP and 3 SSR) were linked. This resulted in 22 major linkage groups and 17 minor groups with fewer than four markers. In the Dolce Agogia map, 236 markers (93 RAPD, 133 AFLP, 6 RFLP and 4 SSR) were linked; 27 major linkage groups and three minor groups were obtained. Codominant RFLPs and SSRs, as well as few RAPDs in heteroduplex configuration, were used to establish homologies between linkage groups of both parents. The total distance covered was 2,765 cM and 2,445 cM in the Leccino and Dolce Agogia maps, respectively. The mean map distance between adjacent markers was 13.2 cM in Leccino and 11.9 cM in Dolce Agogia, respectively. Both AFLP and RAPD markers were homogeneously distributed in all of the linkage groups reported. The stearoyl-ACP desaturase gene was mapped on linkage group 4 of cv. Leccino.  相似文献   

16.
Clustering has been reported for conifer genetic maps based on hypomethylated or low-copy molecular markers, resulting in uneven marker distribution. To test this, a framework genetic map was constructed from three types of microsatellites: low-copy, undermethylated, and genomic. These Pinus taeda L. microsatellites were mapped using a three-generation pedigree with 118 progeny. The microsatellites were highly informative; of the 32 markers in intercross configuration, 29 were segregating for three or four alleles in the progeny. The sex-averaged map placed 51 of the 95 markers in 15 linkage groups at LOD > 4.0. No clustering or uneven distribution across the genome was observed. The three types of P. taeda microsatellites were randomly dispersed within each linkage group. The 51 microsatellites covered a map distance of 795 cM, an average distance of 21.8 cM between markers, roughly half of the estimated total map length. The minimum and maximum distances between any two bins was 4.4 and 45.3 cM, respectively. These microsatellites provided anchor points for framework mapping for polymorphism in P. taeda and other closely related hard pines.  相似文献   

17.
A genetic linkage map of the tetraploid water yam (Dioscorea alata L.) genome was constructed based on 469 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 was obtained by crossing two improved breeding lines, TDa 95/00328 as female parent and TDa 87/01091 as male parent. Since the mapping population was an F1 cross between presumed heterozygous parents, marker segregation data from both parents were initially split into maternal and paternal data sets, and separate genetic linkage maps were constructed. Later, data analysis showed that this was not necessary and thus the combined markers from both parents were used to construct a genetic linkage map. The 469 markers were mapped on 20 linkage groups with a total map length of 1,233 cM and a mean marker spacing of 2.62 cM. The markers segregated like a diploid cross-pollinator population suggesting that the water yam genome is allo-tetraploid (2n = 4x = 40). QTL mapping revealed one AFLP marker E-14/M52-307 located on linkage group 2 that was associated with anthracnose resistance, explaining 10% of the total phenotypic variance. This map covers 65% of the yam genome and is the first linkage map reported for D. alata. The map provides a tool for further genetic analysis of traits of agronomic importance and for using marker-assisted selection in D. alata breeding programmes. QTL mapping opens new avenues for accumulating anthracnose resistance genes in preferred D. alata cultivars.  相似文献   

18.
To lay the foundation for molecular breeding efforts, the first genetic linkage map of mulberry (2n=2x=28) was constructed with 50 F1 full-sib progeny using randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and simple sequence repeat (SSR) markers and two-way pseudotestcross mapping strategy. We selected 100 RAPD, 42 ISSR, and 9 SSR primers that amplified 517 markers, of which 188 (36.36%) showed a test-cross configuration, corresponding to the heterozygous condition in one parent and null in the other. Two separate female and male maps were constructed using 94 each of female- and male-specific testcross markers, containing 12 female linkage groups and 14 male linkage groups. At a minimum logarithm of the odds (LOD) score threshold of 6.0 and at a maximum map distance of 20 cM, the female map covered a 1,196.6-cM distance, with an average distance of 15.75 cM and maximum map distance of 37.9 cM between two loci; the male-specific map covered a 1,351.7-cM distance, with an average distance of 18.78 cM and a maximum map distance between two loci is of 34.7 cM. The markers distributed randomly in all linkage groups without any clustering. All 12 linkage groups in the female-specific map consisted of 4–10 loci ranging in length from 0 to 140.4 cM, and in the male-specific map, the 13 largest linkage groups (except linkage group 12, which contained three loci) consisted of 4–12 loci, ranging in length from 53.9 to 145.9 cM and accounting for 97.22% of the total map distance. When mapping, progeny pass through their juvenile phase and assume their adult characters, mapping morphological markers and identification of quantitative trait loci for adaptive traits will be the primary target. In that sense, our map provides reference information for future molecular breeding work on Morus and its relatives.  相似文献   

19.
In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL) mapping has relied on F1 families with the use of simple sequence repeat (SSR) and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS) technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, ‘Seyval’. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species.  相似文献   

20.
Paspalum notatum Flügge is a warm-season forage grass with mainly diploid (2n = 20) and autotetraploid (2n = 40) representatives. Diploid races reproduce sexually and require crosspollination due to a self-incompatible mating system, while autotetraploids reproduce by aposporous apomixis. The objectives of this work were to develop a genetic linkage map of Paspalum notatum Flügge at the tetraploid level, identify the linkage/s group/s associated with apomixis and carry out a general characterization of its mode of inheritance. A pseudo test-cross F1 family of 113 individuals segregating for the mode of reproduction was obtained by crossing a synthetic completely sexual tetraploid plant (Q4188) as female parent with a natural aposporous individual (Q4117) as pollen donor. Map construction was based on single-dose markers (SDAFs) segregating from both parents. Two linkage maps (female and male) were constructed. Within each map, homologous groups were assembled by detecting repulsion-phase linked SDAFs. Putative Q4188 and Q4117 homolog groups were identified by mapping shared single dose markers (BSDF). The Q4188 map consisted of 263 markers distributed on 26 co-segregation groups over a total genetic distance of 1.590.6 cM, while the Q4117 map contained 216 loci dispersed on 39 co-segregation groups along 2.265.7 cM, giving an estimated genome coverage of 88% and 83%, respectively. Seven and 12 putative homologous chromosomes were detected within Q4188 and Q4117 maps, respectively. Afterward, ten female and male homologous chromosomes were identified by mapping BSDFs. In the Q4117 map, a single linkage group was associated with apospory. It was characterized by restriction in recombination and preferential chromosome pairing. A BPSD marker mapping within this group allowed the detection of the female homolog and the putative four male groups of the set carrying apospory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号