首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth.  相似文献   

2.
3.
高等植物中的磷酸烯醇式丙酮酸羧激酶   总被引:1,自引:0,他引:1  
简要介绍了近年来有关高等植物中磷酸烯醇式丙酮酸羧激酶(PEPCK)的研究进展,并讨论了此酶的结构、功能和调节等方面的问题。  相似文献   

4.
植物磷酸烯醇式丙酮酸羧激酶(PEPCK)研究进展   总被引:1,自引:0,他引:1  
董秀梅  晁青  王柏臣 《植物学报》2013,48(3):320-328
磷酸烯醇式丙酮酸羧激酶(PEPCK)是一个广泛存在于开花植物中的酶, 在植物体内仅存在于特定的组织和细胞中, 其活性受自身磷酸化和一些相关代谢产物的调节。PEPCK的磷酸化在多种植物体内受光调控。ATP存在时, PEPCK催化OAA生成PEP, 而PEP是多种反应的前体物质。通过不同的代谢途径, PEPCK间接地参与贮油植物种子萌发和植物果实成熟的糖异生过程, C4和CAM(景天科代谢)植物光合作用中的CO2浓缩过程, 细胞内pH值平衡和植物体内氮代谢过程等, 从而调节植物的生长发育。该文综述了植物中已发现的PEPCK及其在植物生命活动过程中的自身活性调节和生理功能。  相似文献   

5.
In the filamentous fungus Aspergillus nidulans, cytokinesis/septation is triggered by the septation initiation network (SIN), which first appears at the spindle pole body (SPB) during mitosis. The coiled-coil protein SNAD is associated with the SPB and is required for timely septation and conidiation. We have determined that SNAD acted as a scaffold protein that is required for the localization of the SIN proteins of SIDB and MOBA to the SPB. Another scaffold protein SEPK, whose localization at the SPB was dependent on SNAD, was also required for SIDB and MOBA localization to the SPB. In the absence of either SEPK or SNAD, SIDB/MOBA successfully localized to the septation site, indicating that their earlier localization at SPB was not essential for their later appearance at the division site. Unlike their functional counterparts in fission yeast, SEPK and SNAD were not required for vegetative growth but only for timely septation. Furthermore, down-regulation of negative regulators of the SIN suppressed the septation and conidiation phenotypes due to the loss of SNAD. Therefore, we conclude that SPB localization of SIN components is not essential for septation per se, but critical for septation to take place in a timely manner in A. nidulans.  相似文献   

6.
Gene symbols in Aspergillus nidulans   总被引:6,自引:0,他引:6  
  相似文献   

7.
The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs.  相似文献   

8.
Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.  相似文献   

9.
Ray TB  Black CC 《Plant physiology》1976,58(5):603-607
Phosphoenolpyruvate carboxykinase, EC 4.1.1.32 (PEPCK), was purified 43-fold from the grass Panicum maximum. Michaelis constants (Km) were determined for the exchange reaction, the carboxylation reaction, and the decarboxylation reaction. The Km values for oxaloacetate and ATP in the decarboxylation reaction were found to be lower than the Km values for the substrates used in the exchange reaction and in the carboxylation reaction. Phosphoenolpyruvate carboxylase was not detectable in the purified PEPCK preparation.  相似文献   

10.
11.
12.
A gene encoding a putative GTP-specific phosphoenolpyruvate carboxykinase has been cloned and sequenced from the type I amitochondriate protist Giardia intestinalis. The deduced amino acid sequence is related most closely to homologs from hyperthermophilic archaebacteria and only more distantly to homologs from Eubacteria and Metazoa. Most enzymes of Giardia core metabolism, however, are related more closely to eubacterial and metazoan homologs. An archaebacterial relationship has been noted previously for the unusual acetyl-CoA synthetase (ADP-forming) of this organism. The results suggest that phosphoenolpyruvate carboxykinase and acetyl-CoA synthetase have been acquired from different sources than most enzymes of Giardia core metabolism.  相似文献   

13.
为考察灰绿曲霉中地标蛋白AgTeaA对菌丝极化生长的作用,首先需要获得AgTeaA基因序列的相关信息.通过简并PCR的方法得到AgTeaA基因编码区的一段序列,以已知序列为基础通过染色体步移的方法获得基因全长及两端侧翼序列,然后通过逆转录PCR的方法确定出氨基酸序列,并利用相关生物学软件进行蛋白结构域的分析和系统进化树的构建.结果显示,AgTeaA基因编码区全长4 706 bp,对应氨基酸全长为l 477 aa,在256-320 bp,733-780bp,1 064-1 150 bp处各有一个内含子.与粟酒裂殖酵母Teal蛋白和构巢曲霉TeaA蛋白相似的是,AgTeaA在290-339aa,340-390 aa处各有一个Kelch结构域,在818-899aa,938-999aa,1 021-1 116aa,1 183-1 335aa处各有一个卷曲螺旋(coiled coil)结构域.  相似文献   

14.
Phosphoenolpyruvate (PEP) carboxylation is an important step in the production of succinate by Escherichia coli. Two enzymes, PEP carboxylase (PPC) and PEP carboxykinase (PCK), are responsible for PEP carboxylation. PPC has high substrate affinity and catalytic velocity but wastes the high energy of PEP. PCK has low substrate affinity and catalytic velocity but can conserve the high energy of PEP for ATP formation. In this work, the expression of both the ppc and pck genes was modulated, with multiple regulatory parts of different strengths, in order to investigate the relationship between PPC or PCK activity and succinate production. There was a positive correlation between PCK activity and succinate production. In contrast, there was a positive correlation between PPC activity and succinate production only when PPC activity was within a certain range; excessive PPC activity decreased the rates of both cell growth and succinate formation. These two enzymes were also activated in combination in order to recruit the advantages of each for the improvement of succinate production. It was demonstrated that PPC and PCK had a synergistic effect in improving succinate production.  相似文献   

15.
16.
17.
Augmin is a protein complex that binds to spindle microtubules (MTs), recruits the potent MT nucleator, γ-tubulin, and thereby promotes the centrosome-independent MT generation within mitotic and meiotic spindles. Augmin is essential for acentrosomal spindle assembly, which is commonly observed during mitosis in plants and meiosis in female animals. In many animal somatic cells that possess centrosomes, the centrosome- and augmin-dependent mechanisms work cooperatively for efficient spindle assembly and cytokinesis. Yeasts have lost the augmin genes during evolution. It is hypothesized that their robust MT nucleation from the spindle pole body (SPB), the centrosome-equivalent structure in fungi, compensates for the lack of augmin. Intriguingly, however, a gene homologous to an augmin subunit (Aug6/AUGF) has been found in the genome of filamentous fungi, which has the SPB as a robust MT nucleation centre. Here, we aimed to clarify if the augmin complex is present in filamentous fungi and to identify its role in mitosis. By analysing the Aug6-like gene in the filamentous fungus Aspergillus nidulans, we found that it forms a large complex with several other proteins that share weak but significant homology to known augmin subunits. In A. nidulans, augmin was enriched at the SPB and also associated with spindle MTs during mitosis. However, the augmin gene disruptants did not exhibit growth defects under normal, checkpoint-deficient, or MT-destabilised conditions. Moreover, we obtained no evidence that A. nidulans augmin plays a role in γ-tubulin recruitment or in mitotic cell division. Our study uncovered the conservation of the augmin complex in the fungal species, and further suggests that augmin has several functions, besides mitotic spindle MT nucleation, that are yet to be identified.  相似文献   

18.
We cloned and characterized a novel Aspergillus nidulans histidine kinase gene, tcsB, encoding a membrane-type two-component signaling protein homologous to the yeast osmosensor synthetic lethal N-end rule protein 1 (SLN1), which transmits signals through the high-osmolarity glycerol response 1 (HOG1) mitogen-activated protein kinase (MAPK) cascade in yeast cells in response to environmental osmotic stimuli. From an A. nidulans cDNA library, we isolated a positive clone containing a 3,210-bp open reading frame that encoded a putative protein consisting of 1,070 amino acids. The predicted tcsB protein (TcsB) has two probable transmembrane regions in its N-terminal half and has a high degree of structural similarity to yeast Sln1p, a transmembrane hybrid-type histidine kinase. Overexpression of the tcsB cDNA suppressed the lethality of a temperature-sensitive osmosensing-defective sln1-ts yeast mutant. However, tcsB cDNAs in which the conserved phosphorylation site His552 residue or the phosphorelay site Asp989 residue had been replaced failed to complement the sln1-ts mutant. In addition, introduction of the tcsB cDNA into an sln1Δ sho1Δ yeast double mutant, which lacked two osmosensors, suppressed lethality in high-salinity media and activated the HOG1 MAPK. These results imply that TcsB functions as an osmosensor histidine kinase. We constructed an A. nidulans strain lacking the tcsB gene (tcsBΔ) and examined its phenotype. However, unexpectedly, the tcsBΔ strain did not exhibit a detectable phenotype for either hyphal development or morphology on standard or stress media. Our results suggest that A. nidulans has more complex and robust osmoregulatory systems than the yeast SLN1-HOG1 MAPK cascade.  相似文献   

19.
We report a novel sexual-cycle-specific gene-silencing system in the genetic model Aspergillus nidulans. Duplication of the mating type matAHMG gene in this haploid organism triggers Mat-induced silencing (MatIS) of both endogenous and transgenic matA genes, eliminates function of the encoded SRY structural ortholog, and results in formation of barren fruiting bodies. MatIS is spatiotemporally restricted to the prezygotic stage of the sexual cycle and does not interfere with vegetative growth, asexual reproduction, differentiation of early sexual tissues, or fruiting body development. MatIS is reversible upon deletion of the matA transgene. In contrast to other sex-specific silencing phenomena, MatIS silencing has nearly 100% efficiency and appears to be independent of homologous duplicated DNA segments. Remarkably, transgene-derived matA RNA might be sufficient to induce MatIS. A unique feature of MatIS is that RNA-mediated silencing is RNA interference/Argonaute-independent and is restricted to the nucleus having the duplicated gene. The silencing phenomenon is recessive and does not spread between nuclei within the common cytoplasm of a multinucleate heterokaryon. Gene silencing induced by matA gene duplication emerges as a specific feature associated with matAHMG regulation during sexual development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号