首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of Incorporation of Structural Proteins into Sindbis Virions   总被引:20,自引:15,他引:5       下载免费PDF全文
The morphogenesis of Sindbis virus was studied by determining the kinetics with which newly synthesized nucleocapsid and envelope proteins appeared in virions released into the extracellular medium. Assembly of the nucleocapsid was more rapid than modification of the cellular membrane by the addition of the viral envelope protein. However, both viral structural proteins were efficiently incorporated into virions; a 0.5-hr pulse-labeling period resulted in the release of maximally labeled virus during the next hour. When protein synthesis was inhibited, release of virus soon declined even though large amounts of both viral structural proteins were present within the cell and ribonucleic acid replication was unaffected.  相似文献   

2.
Structural Proteins of Rabies Virus   总被引:24,自引:20,他引:4  
Purified rabies virions, unlabeled or labeled with radioactive amino acids or d-glucosamine, were dissociated into their polypeptides by treatment with sodium dodecyl sulfate in a reducing environment and fractionated by electroiphoresis in sodium dodecyl sulfate-containing polyacrylamide gel. The molecular weights of individual polypeptides were estimated by comparison of their rate of migration with that of protein markers of known molecular weight. Purified viral nucleocapsid and a mixture of envelope components, isolated from virions disrupted by sodium deoxycholate, were analyzed by the same procedure. The number of molecules per virion of each polypeptide was estimated from the proportions of the separated components, the known molecular weight of the viral ribonucleic acid, and the chemical composition of the nucleocapsid. The protein moiety of the nucleocapsid particle was estimated to consist of 1,713 molecules of a major polypeptide (molecular weight, 62,000 daltons) and 76 molecules of a minor polypeptide (molecular weight, 55,000 daltons). In addition to 1,783 molecules of a glycoprotein component (molecular weight, 80,000 daltons), the viral envelope contains 789 and 1,661 molecules, respectively, of two other polypeptides (molecular weight, 40,000 and 25,000 daltons).  相似文献   

3.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

4.
Large-Molecular-Weight Precursors of Sindbis Virus Proteins   总被引:36,自引:32,他引:4       下载免费PDF全文
Infection of chicken embryo fibroblasts with a temperature-sensitive mutant of Sindbis virus at the nonpermissive temperature leads to the accumulation of a large-molecular-weight protein. We have shown that this protein contains (14)C-arginine tryptic peptides present in the three virion proteins. We have also found that a slightly smaller protein which is detected in Sindbis-infected BHK cells contains the (14)C-arginine tryptic peptides of the two envelope proteins but not those of the capsid protein. Pulse-chase experiments indicate that the Sindbis virus protein in BHK cells is cleaved to the envelope proteins.  相似文献   

5.
We have shown previously that processing of the Sindbis virus envelope protein precursor PE2 to envelope protein E2 is not required for virus maturation in cultured vertebrate fibroblast cells and that unprocessed PE2 can be incorporated into infectious virus in place of E2 (J. F. Presley and D. T. Brown, J. Virol. 63:1975-1980, 1989; D. L. Russell, J. M. Dalrymple, and R. E. Johnston, J. Virol. 63:1619-1629, 1989). To better understand the role of this processing event in the invertebrate vector portion of the alphavirus life cycle, we have examined the maturation of Sindbis virus mutants defective in PE2 processing in cultured mosquito cells. We found that although substantial amounts of structural proteins PE2, E1, and C were produced in infected mosquito (aedine) cell lines, very little infectious virus was released. When the period of infection was extended, plaque size variants appeared, some of which exhibited a restored ability to grow in mosquito cells. The nucleotide sequences of two such variants were determined. These variants contained point mutations that restored PE2 cleavage, indicating a genetic linkage between failure to cleave PE2 and failure to grow in mosquito cells.  相似文献   

6.
The association of vesicular stomatitis virus proteins with intracellular and plasma membranes was examined by pulse and pulse-chase labeling of virus-infected HeLa cells with [35S]methionine and separation of cell homogenates into three major membrane fractions in discontinuous sucrose gradients. The glycoprotein G was primarily associated with rough endoplasmic reticulum-like membranes after short radioactive pulses (2 to 4 min) but accumulated in the plasma membrane-enriched fraction and the smooth internal membrane fraction with longer pulse or chase periods. The nucleocapsid protein N and the matrix protein M accumulated in the rough endoplasmic reticulum and plasma membrane-like fractions but not in the smooth internal membrane fraction. Only a fraction (35 to 40%) of the viral protein synthesized during a short pulse in the mid-cycle of infection was apparently utilized in released virus. The newly synthesized virus proteins first appeared in released virus in the order: M, N and L, and G.  相似文献   

7.
The association of Sindbis virus proteins with cellular membranes during virus maturation was examined by utilizing a technique for fractionating the membranes of BHK-21 cells into three subcellular classes, which were enriched for rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membrane. Pulse-chase experiments with wild-type (strain SVHR) virus-infected cells showed that virus envelope proteins were incorporated initially into membranes of the rough endoplasmic reticulum and subsequently migrated to the smooth and plasma membrane fractions. Large amounts of capsid protein were associated with the plasma membrane fraction even at the earliest times postpulse, and relatively little was found associated with the other membranes, suggesting a rapid and preferential association of nucleocapsids with the plasma membrane. We also examined the intracellular processing of the proteins of two temperature-sensitive Sindbis virus mutants in pulse-chase experiments at the nonpermissive temperature. Labeled virus proteins of mutant ts-20 (complementation group E) first appeared in the rough endoplasmic reticulum and were then transported to the smooth and plasma membrane fractions, as in wild-type (strain SVHR) virus-infected cells. In cells infected with ts-23 (complementation group D), the pulse-labeled virus proteins appeared initially in the rough membrane fraction and were transported to the smooth membrane fraction, but only limited amounts reached the plasma membrane. Thus, in ts-23-infected cells, the transport of the virus-encoded proteins from the smooth membranes seemed to be defective. In both ts-20- and ts-23-infected cells the envelope precursor polypeptide PE2 was not processed to E2, and no label was incorporated into free virus at the nonpermissive temperature.  相似文献   

8.
Precursor Protein for Newcastle Disease Virus   总被引:12,自引:10,他引:2       下载免费PDF全文
The course of viral protein synthesis during infection of chicken embryo fibroblasts with Newcastle disease virus (NDV) L. Kansas has been followed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Of the three major virion polypeptide molecular weight classes, I (78,400 daltons), II (53,500 daltons), and III (37,600 daltons), only II, having the same electrophoretic mobility as nucleocapsid polypeptide, appears to be the cleavage product of a precursor polypeptide PII (64,800 daltons) detected in NDV-infected cells after brief labeling with radioactive amino acids. Nucleocapsids were isolated from NDV-infected cells which had been pulse-labeled with radioactive amino acids or pulse-labeled and further incubated with unlabeled amino acids. Gel electrophoretic analysis of proteins derived from nucleocapsids showed that an increase in the period of incubation with unlabeled amino acids resulted in an increase in the amount of radioactivity in nucleocapsid protein. Polypeptide PII was not detected as a transient component of the isolated nucleocapsid fraction. These results are consistent with two interpretations. The product of PII cleavage is (i) nucleocapsid polypeptide, or (ii) a nonvirion or minor envelope polypeptide having the same electrophoretic mobility as nucleocapsid polypeptide.  相似文献   

9.
Yaba virus proteins were characterized by polyacrylamide gel electrophoresis. Electrophoresis of Yaba virion (proteins) dissociated by sodium dodecyl sulfate and 2-mercaptoethanol in continuous and discontinuous buffer systems yielded 37 polypeptide species by staining and by counting bands of radioactively labeled polypeptides. The molecular weights of the viral polypeptide species were found to range from 10,000 to 220,000 by comparing the relative distance of migration of viral proteins with proteins of known molecular weights. Two polypeptides were removed from purified virions by nonionic detergent nonidet P -40 treatment, and the amount of one polypeptide was reduced. Purified cores yielded 21 polypeptide species, none of which was labeled with radioactive glucosamine.  相似文献   

10.
All Sindbis virus temperature-sensitive mutants defective in "late" functions were systematically surveyed by acrylamide-gel electrophoresis for similarities and differences in the intracellular pattern of virus-specific proteins synthesized at the permissive and nonpermissive temperatures. Only cells infected with mutants of complementation group C showed an altered pattern. At the nonpermissive temperature, these mutants failed to induce the synthesis of a polypeptide corresponding to the nucleocapsid protein and instead overproduced a protein of higher molecular weight than either viral structural protein. This defect was shown to be irreversible by the finding that (3)H-leucine incorporated at 41.5 C specifically failed to appear in the nucleocapsid of virions subsequently released at 29 C. Attempts to demonstrate a precursor protein in wild-type infections were inconclusive.  相似文献   

11.
The Sindbis virus envelope protein spike is a hetero-oligomeric complex composed of a trimer of glycoprotein E1-E2 heterodimers. Spike assembly is a multistep process which occurs in the endoplasmic reticulum (ER) and is required for the export of E1 from the ER. PE2 (precursor to E2), however, can transit through the secretory pathway and be expressed at the cell surface in the absence of E1. Although oligomer formation does not appear to be required for the export of PE2, there is evidence that defects in E1 folding can affect PE2 transit from the ER. Temperature-sensitive mutant ts23 of Sindbis virus contains two amino acid substitutions in E1, while PE2 and capsid protein have the wild-type sequence; however, at the nonpermissive temperature, both E1 and PE2 are retained within the ER and can be isolated in protein aggregates with the molecular chaperone GRP78-BiP. We previously demonstrated that the temperature sensitivity for ts23 was lost as oligomer formation took place at the permissive temperature, suggesting that temperature sensitivity is initiated early in the process of viral spike assembly (M. Carleton and D. T. Brown, J. Virol. 70:952-959, 1996). Experiments described herein investigated the defects in envelope protein maturation that occur in ts23-infected cells and which result in retention of both envelope proteins in the ER. The data demonstrate that in ts23-infected cells incubated at the nonpermissive temperature, E1 folding is disrupted early after synthesis, resulting in the rapid incorporation of both E1 and PE2 into disulfide-stabilized aggregates. Furthermore, the aberrant E1 conformation which is responsible for induction of the ts phenotype requires the formation of intramolecular disulfide bridges formed prior to E1 association with PE2 and the completion of E1 folding.  相似文献   

12.
The synthesis and organization of Sindbis virus structural proteins was investigated in BHK cells infected with wild-type virus (SVHR) or temperature-sensitive (ts) mutants defective in maturation. Cells infected with ts-23 or ts-20 (complementation groups D and E) were similar in the polypeptides synthesized at the nonpermissive temperature and differed from SVHR-infected cells in that the envelope protein E2 was not cleaved from the PE2 precursor. Data from experiments utilizing pulse-chase procedures or protein synthesis inhibitors indicated that although infectious virions were released from cells infected with these mutants in shift-down experiments, the particles were produced almost exclusively from proteins synthesized after the return to permissive temperature. This suggests that a stable complex may be formed among the structural proteins before budding. A membrane fraction isolated from cells infected with either ts mutants or SVHR contained the PE2, E1, and C polypeptides, whereas E2 was restricted to fractions obtained from SVHR-infected cells. Although equivalent amounts of virus-specific protein were synthesized in cells infected with either mutant and the cells contained qualitatively the same proteins in the isolated membranes, cells infected with ts-23 did not have virus-specific proteins exposed on their surface that could be detected by ferritin-conjugated antibody-labeling procedures or lactoperoxidase-mediated iodination. In contrast, ts-20-infected cells had significant amounts of viral protein, mainly E1, that could be detected on the plasma membrane by either procedure. Iodine was incorporated into E1 and E2 on the surface of SVHR-infected cells in the same relative amounts as seen in iodinated virions. PE2, however, although present in membranes, could not be iodinated on the surface of infected cells under any of the conditions used in this study. We also monitored the relative efficiency with which these viral proteins could be removed from intact cells by dilute solutions of nonionic detergents. The results indicated that E2 was most efficiently removed, followed by E1. PE2 (the precursor to E2) and C remained associated with the cell and could be subsequently isolated in the membrane fraction.  相似文献   

13.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis virus was almost nonviable. Nucleocapsids formed in normal numbers in the infected cell, but very little virus was released from the cell. There are 11 amino acid differences between Ross River virus and Sindbis virus in their 33-residue E2 cytoplasmic domains. Site-specific mutagenesis was used to change 9 of these 11 amino acids in the chimera from the Ross River virus to the Sindbis virus sequence in an attempt to adapt the E2 of the chimera to the nucleocapsid. The resulting mutant chimera grew 4 orders of magnitude better than the parental chimeric virus. This finding provides direct evidence for a sequence-specific interaction between the nucleocapsid and the E2 cytoplasmic domain during virus budding. The mutated chimeric virus readily gave rise to large-plaque variants that grew almost as well as Ross River virus, suggesting that additional single amino acid substitutions in the structural proteins can further enhance the interactions between the disparate capsid and the glycoproteins. Unexpectedly, change of E2 residue 394 from lysine (Ross River virus) to glutamic acid (Sindbis virus) was deleterious for the chimera, suggesting that in addition to its role in nucleocapsid-E2 interactions, the N-terminal part of the E2 cytoplasmic domain may be involved in glycoprotein-glycoprotein interactions required to assemble the glycoprotein spikes. The reciprocal chimera, Sindbis virus containing the Ross River virus capsid, also grew poorly. Suppressor mutations arose readily in this chimera, producing a virus that grew moderately well and that formed larger plaques.  相似文献   

14.
Previous work has shown that the Sindbis structural proteins, core, the internal protein, and PE2 and E1, the integral membrane glycoproteins are synthesized as a polyprotein from a 26S mRNA; core PE2 and E1 are derived by proteolytic cleavage of a nascent chain. Newly synthesized core protein remains on the cytoplasmic side of the endoplasmic reticulum while newly synthesized PE2 and E1 are inserted into the lipid bilayer, presumably via their amino-termini. PE2 and E1 are glycosylated as nascent chains. Here, we examine a temperature-sensitive mutant of Sindbis virus which fails to cleave the structural proteins, resulting in the production of a polyprotein of 130,000 mol wt in which the amino-termini of PE2 and E1 are internal to the protein. Although the envelope sequences are present in this protein, it is not inserted into the endoplasmic reticulum bilayer, but remains on the cytoplasmic side as does the core protein in cells infected with wild-type Sindbis virus. We have also examined the fate of PE2 and E1 in cells treated with tunicamycin, an inhibitor of glycosylation. Unglycosylated PE2 and E1 are inserted normally into the lipid bilayer as are the glycosylated proteins. These results are consistent with the notion that a specific amino-terminal sequence is required for the proper insertion of membrane proteins into the endoplasmic reticulum bilayer, but that glycosylation is not required for this insertion.  相似文献   

15.
Disulfide bridge-mediated folding of Sindbis virus glycoproteins.   总被引:3,自引:3,他引:0       下载免费PDF全文
The Sindbis virus envelope is composed of 80 E1-E2 (envelope glycoprotein) heterotrimers organized into an icosahedral protein lattice with T=4 symmetry. The structural integrity of the envelope protein lattice is maintained by E1-E1 interactions which are stabilized by intramolecular disulfide bonds. Structural domains of the envelope proteins sustain the envelope's icosahedral lattice, while functional domains are responsible for virus attachment and membrane fusion. We have previously shown that within the mature Sindbis virus particle, the structural domains of the envelope proteins are significantly more resistant to the membrane-permeative, sulfhydryl-reducing agent dithiothreitol (DTT) than are the functional domains (R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have used DTT to probe the accessibility of intramolecular disulfides within PE2 (the precursor to E2) and E1, as these proteins fold and are assembled into the spike heterotrimer. We have determined through pulse-chase analysis that intramolecular disulfide bonds within PE2 are always sensitive to DTT when the glycoproteins are in the endoplasmic reticulum. The reduction of these disulfides results in the disruption of PE2-E1 associations. E1 acquires increased resistance to DTT as it folds through a series of disulfide intermediates (E1alpha, -beta, and -gamma) prior to assuming its native and most compact conformation (E1epsilon). The transition from a DTT-sensitive form into a form which exhibits increased resistance to DTT occurs after E1 has folded into its E1beta conformation and correlates temporally with the dissociation of BiP-E1 complexes and the formation of PE2-E1 heterotrimers. We propose that the disulfide bonds within E1 which stabilize the protein domains required for maintaining the structural integrity of the envelope protein lattice form early within the folding pathway of E1 and become inaccessible to DTT once the heterotrimer has formed.  相似文献   

16.
17.
18.
The nucleocapsid of Sindbis virus, a natural non-infectious complex of the viral RNA and protein molecules can be encapsulated in large, unilamellar vesicles and delivered efficiently to cells in an infectious form. It is shown that high infectivity of the vesicle entrapped nucleocapsids is partly due to the viral envelope proteins which enhance entrapment and liposome cell interaction.We believe that the efficiency of liposome mediated gene transfer of eukaryotic cells can be increased significantly by the insertion of fusogenic viral envelope proteins into the lipid bilayer of liposomes.  相似文献   

19.
Two mouse L cell variant lines (CL 3 and CL 6) selected for resistance to the toxic plant lectin ricin were restricted in their ability to replicate the two alphaviruses Sindbis virus and Semliki Forest virus. CL 3 cells have been shown to exhibit increased CMP-sialic acid:glycoprotein sialyltransferase and GM3 synthetase activities, whereas CL 6 cells have been shown to contain decreased UDPgalactose:glycoprotein galactosyltransferase and UDP-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activities. The adsorption of Sindbis virus to CL 6 cells was considerably reduced, suggesting that the loss or inaccessibility of the receptors for Sindbis virus accounted for a major defect in virus production in these cells. In contrast, CL 3 synthesized Sindbis viral RNA and proteins but were unable to convert the precursor glycoprotein PE2 to the structural protein E2. The cleavage of PE2 to E2 was also blocked in both CL 3 and CL 6 cells infected with Semliki Forest virus.  相似文献   

20.
Addition of d-glucosamine to BHK cells infected with Sindbis virus inhibited the formation of the E-2 viral envelope from its precursor PE-2. Release of virus was blocked, and two new viral protein bands replaced the normal envelope protein bands detected in SDS-gel electropherograms of infected cell extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号