首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Abstract

The gonads of 528 female and 821 male stoats were examined. The weights of ovaries and testes in adults peaked simultaneously in October, the season of births and of post-partum oestrus. Of 73 females, 78% had even numbers of nipples, mostly 8 or 10. The mean number of embryos in 13 pregnancies was 8.8 (6–13), and embryo weights ranged from 0.005 g to 2.9 g. Of 11 pregnant females, 8 contained fewer embryos than corpora lutea, and there was evidence of transuterine migration of blastocysts in 6. All but 2 of 451 females caught in December–July inclusive carried corpora lutea of delay. Few adult and no young females were found in oestrus in September–October, though adult males were fertile from August to February (no first-year males were fertile). There was some evidence that the breeding season started later at more southerly latitudes in both males and females. The mean number of corpora lutea per female was 9.7 (n = 439), and there was a significant inverse correlation between counts for the 2 ovaries of one individual. There was generally no significant variation in fecundity of females with age, body weight, or year. Of 11 females which were considered to have lost their litters, 10 were collected in beech (Nothofagus) forests. Four females and 9 males had abnormal gonads; the most severe abnormality was an ovarian teratoma of unknown pathology.  相似文献   

2.
Abstract

A total of 1599 stoats were collected from 14 study areas (including all 10 National Parks) from 1972 to 1976. Samples were larger in summer, and contained more females. Young stoats are born in September-October, and females reach adult weight by the following March, though males not until after August. There was significant geographic variation in the body size of adult stoats sampled: males from lowland podocarp/broadleaved forests averaged 3% smaller than males from upland beech forests in skull length, and 4% smaller in head-and-body length. This pattern was repeated, less clearly, in females and in young (approximately 2–5 months old). In contrast with stoats in Britain, assumed to be still the same size as the colonising stock introduced into New Zealand in 1884 and subsequently, males from lowland podocarp forests were unchanged or possibly smaller, and males from upland beech forests were larger; females were larger in all habitats. In males, the extent of geographic variation is almost as great in New Zealand as in the whole of continental Europe. Possible explanations of this pattern are discussed.  相似文献   

3.
The removal of invasive species is common in restoration projects, yet the long‐term effects of pest management programs are seldom assessed. We present results of a long‐term program to remove the invasive species Lupinus arboreus (lupin) from sand dunes in New Zealand. We evaluate the response of plant communities to lupin removal, by comparing total plant cover, the cover of non‐native and native plant species, and species richness between sand dune sites where lupin removal has occurred, not occurred, and where lupin has never been present. Neither lupin presence nor removal had a significant impact on the foredune environment. Following removal, total and other non‐native plant cover remained higher, and the cover of several native sand dune species remained lower compared with uninvaded sites in the deflation and backdune environments. These changes can be attributed to persistent effects associated with the invasion of lupin, but have also developed in response to lupin removal. The results of this study have implications for restoration projects in sand dunes. Pest management alone is unlikely to be sufficient to restore plant communities. Given the difficulties in restoring plant communities once an invasive species has established, managers should prioritize actions to prevent the spread of invasive species into uninvaded areas of sand dunes. Finally, the response to lupin invasion and removal differed between dune habitats. This highlights the importance of tailoring a pest management program to restoration goals by, for example, prioritizing areas in which the impacts of the invading species are greatest.  相似文献   

4.
Stoats are significant predators of native fauna in New Zealand. They occur in many habitat types and consume a wide range of prey. The diet of stoats in the Tasman River, South Canterbury, was studied by analysis of scats and den contents. Analysis of 206 scats showed that stoats ate mainly lagomorphs, birds and invertebrates. Minor components included mice, lizards, fish and hedgehogs. Stoats ate more birds in spring than in autumn, and female stoats ate more invertebrates than did males. The contents of 219 dens collected in the same area at the same time provided further information. Birds and lagomorphs occurred at high frequency in dens, and other components were minor. Remains in dens were larger than in scats and allowed identification of many more prey items to species level. Den contents revealed a potentially substantial impact of stoats on threatened shorebirds locally; this impact was not detected by analysis of scats.  相似文献   

5.
Control programs are implemented to mitigate the damage caused by invasive species worldwide. In the highly invaded Great Lakes, the climate is expected to become warmer with more extreme weather and variable precipitation, resulting in shorter iced‐over periods and variable tributary flows as well as changes to pH and river hydrology and hydrogeomorphology. We review how climate change influences physiology, behavior, and demography of a damaging invasive species, sea lamprey (Petromyzon marinus), in the Great Lakes, and the consequences for sea lamprey control efforts. Sea lamprey control relies on surveys to monitor abundance of larval sea lamprey in Great Lakes tributaries. The abundance of parasitic, juvenile sea lampreys in the lakes is calculated by surveying wounding rates on lake trout (Salvelinus namaycush), and trap surveys are used to enumerate adult spawning runs. Chemical control using lampricides (i.e., lamprey pesticides) to target larval sea lamprey and barriers to prevent adult lamprey from reaching spawning grounds are the most important tools used for sea lamprey population control. We describe how climate change could affect larval survival in rivers, growth and maturation in lakes, phenology and the spawning migration as adults return to rivers, and the overall abundance and distribution of sea lamprey in the Great Lakes. Our review suggests that Great Lakes sea lamprey may benefit from climate change with longer growing seasons, more rapid growth, and greater access to spawning habitat, but uncertainties remain about the future availability and suitability of larval habitats. Consideration of the biology of invasive species and adaptation of the timing, intensity, and frequency of control efforts is critical to the management of biological invasions in a changing world, such as sea lamprey in the Great Lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号