首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flexible Services and Manufacturing Journal - The size of container ships and the number of containers being transshipped at container terminals have steadily increased over the years....  相似文献   

2.
3.
Flexible Services and Manufacturing Journal - This paper investigates a dynamic and stochastic shipment matching problem faced by network operators in hinterland synchromodal transportation. We...  相似文献   

4.
小相岭山系大熊猫廊道规划   总被引:4,自引:3,他引:4  
廊道能有效地增加栖息地斑块间的大熊猫种群交流,降低种群灭绝的风险。小相岭山系是现存大熊猫种群数量最少的山系之一。通过MAXENT(Maximum Entropy)分析,发现小相岭山系存在7个相对隔离的栖息地斑块,栖息地破碎化严重。为了增加小相岭山系大熊猫种群交流,利用最小代价路径原理和电流理论,从保护管理角度出发,在该区域划定了9条连接大熊猫栖息地斑块的廊道。其中紫马-麻麻地廊道连接该区域面积最大、大熊猫痕迹点最多的两个栖息地斑块,生态意义重大,建议优先建设该廊道。此外,研究划定的多个廊道彼此邻近,甚至存在一定程度的重叠。将这些极其邻近或者重叠的廊道合并,并提出"廊道群"的概念。廊道群是两个或两个以上极其相邻的廊道构成的网状结构,廊道群作为景观上的网状结构,能同时连接多个栖息地斑块,更有效地增加多个栖息地斑块间的种群交流。由于农田的挤压,部分廊道难以达到大熊猫廊道的最低宽度需求(2230 m),制约了其生态效应的发挥,建议在以后的保护工作中探索农田区域的栖息地恢复方式。  相似文献   

5.
Gershenson C 《PloS one》2011,6(6):e21469
The performance of public transportation systems affects a large part of the population. Current theory assumes that passengers are served optimally when vehicles arrive at stations with regular intervals. In this paper, it is shown that self-organization can improve the performance of public transportation systems beyond the theoretical optimum by responding adaptively to local conditions. This is possible because of a "slower-is-faster" effect, where passengers wait more time at stations but total travel times are reduced. The proposed self-organizing method uses "antipheromones" to regulate headways, which are inspired by the stigmergy (communication via environment) of some ant colonies.  相似文献   

6.
Recent increases in the rates of biological invasion and spread of infectious diseases have been linked to the continued expansion of the worldwide airline transportation network (WAN). Here, the global structure of the WAN is analysed in terms of climatic similarity to illuminate the risk of deliberate or accidental movements of climatically sensitive organisms around the world. From over 44,000 flight routes, we show, for each month of an average year, (i) those scheduled routes that link the most spatially distant but climatically similar airports, (ii) the climatically best-connected airports, and (iii) clusters of airports with similar climatic features. The way in which traffic volumes alter these findings is also examined. Climatic similarity across the WAN is skewed (most geographically close airports are climatically similar) but heavy-tailed (there are considerable numbers of geographically distant but climatically similar airports), with climate similarity highest in the June-August period, matching the annual peak in air traffic. Climatically matched, geographically distant airports form subnetworks within the WAN that change throughout the year. Further, the incorporation of passenger and freight traffic data highlight at greater risk of invasion those airports that are climatically well connected by numerous high capacity routes.  相似文献   

7.
Sustainability has become an overarching concern for transportation policy and planning around the world. This article presents an approach for urban transport sustainability performance evaluation using fuzzy logic. This article presents a model for transport sustainability performance evaluation. Appropriate transport sustainability indicators were identified based on literature. The model addresses all major dimensions of transport sustainability such as Economic Sustainability, Social Sustainability, Environmental Sustainability and Transportation System Effectiveness. Transport sustainability index has been computed as (5.05, 6.62, 8.12) and weaker transport sustainability attributes were found. Transport sustainability index highlights the question how far toward becoming transport sustainable is an enterprise or region? While, weaker transport sustainability attributes reveals that how can an enterprise or region improve its transport sustainability effectively? Appropriate actions were initiated to improve urban transport sustainability performance. The results indicate that the model is capable of effectively assessing transport sustainability and has practical relevance. An example is also used to illustrate the approach developed. The results obtained using fuzzy approach has been validated with conventional crisp approach. 20 transport sustainability attributes out of 60 are found to be weaker and appropriate actions were derived to improve the weaker attributes.  相似文献   

8.
河西走廊绿洲灌区在农业产业化进程加快的同时,也带来了水资源和生态环境的压力.本文利用养分流动和模型分析的方法,分析河西走廊绿洲灌区典型“农田-食用菌”生产系统(农田-食用菌集约生产模式、农田-食用菌单户生产模式、农田单作)的氮元素流动特征.结果表明:农田作物秸秆通过食用菌体系还田使氮素利用率提高了10%左右,秸秆还田氮输入量(165.6kg· hm-2·a-1)占农田氮素总输入量的37.1%,使化肥氮输入量减少,因此秸秆氮的合理循环利用可作为减少化肥投入的有效途径.但农田氮素仍有盈余,单位面积氮盈余量高达217.0 kg·hm-2· a-1,未能实现循环模式内养分平衡的理想效果,因此优化氮素管理、确定合理的大田作物和食用菌面积、调整农业产业结构是解决该问题的关键.  相似文献   

9.
A living system reveals local computing by referring to a whole system beyond the exploration-exploitation dilemma. The slime mold, Physarum polycephalum, uses protoplasmic flow to change its own outer shape, which yields the boundary condition and forms an adaptive and robust network. This observation suggests that the whole Physarum can be represented as a local protoplasmic flow system. Here, we show that a system composed of particles, which move and are modified based upon the particle transformation that contains the relationship between the parts and the whole, can emulate the network formed by Physarum. This system balances the exploration-exploitation trade-off and shows a scale-free sub-domain. By decreasing the number of particles, our model, VP-S, can emulate the Physarum adaptive network as it is attracted to a food stimulus. By increasing the number of particles, our model, VP-D, can emulate the pattern of a growing Physarum. The patterns produced by our model were compared with those of the Physarum pattern quantitatively, which showed that both patterns balance exploration with exploitation. This model should have a wide applicability to study biological collective phenomena in general.  相似文献   

10.
Biological solutions to transport network design   总被引:3,自引:0,他引:3  
Transport networks are vital components of multicellular organisms, distributing nutrients and removing waste products. Animal and plant transport systems are branching trees whose architecture is linked to universal scaling laws in these organisms. In contrast, many fungi form reticulated mycelia via the branching and fusion of thread-like hyphae that continuously adapt to the environment. Fungal networks have evolved to explore and exploit a patchy environment, rather than ramify through a three-dimensional organism. However, there has been no explicit analysis of the network structures formed, their dynamic behaviour nor how either impact on their ecological function. Using the woodland saprotroph Phanerochaete velutina, we show that fungal networks can display both high transport capacity and robustness to damage. These properties are enhanced as the network grows, while the relative cost of building the network decreases. Thus, mycelia achieve the seemingly competing goals of efficient transport and robustness, with decreasing relative investment, by selective reinforcement and recycling of transport pathways. Fungal networks demonstrate that indeterminate, decentralized systems can yield highly adaptive networks. Understanding how these relatively simple organisms have found effective transport networks through a process of natural selection may inform the design of man-made networks.  相似文献   

11.
12.
13.
14.
Traditionally, proteins have been viewed as a construct based on elements of secondary structure and their arrangement in three-dimensional space. In a departure from this perspective we show that protein structures can be modelled as network systems that exhibit small-world, single-scale, and to some degree, scale-free properties. The phenomenological network concept of degrees of separation is applied to three-dimensional protein structure networks and reveals how amino acid residues can be connected to each other within six degrees of separation. This work also illuminates the unique features of protein networks in comparison to other networks currently studied. Recognising that proteins are networks provides a means of rationalising the robustness in the overall three-dimensional fold of a protein against random mutations and suggests an alternative avenue to investigate the determinants of protein structure, function and folding.  相似文献   

15.
Systems biology is all about networks. A recent trend has been to associate systems biology exclusively with the study of gene regulatory or protein-interaction networks. However, systems biology approaches can be applied at many other scales, from the subatomic to the ecosystem scales. In this review, we describe studies at the sub-cellular, tissue, whole plant and crop scales and highlight how these studies can be related to systems biology. We discuss the properties of system approaches at each scale as well as their current limits, and pinpoint in each case advances unique to the considered scale but representing potential for the other scales. We conclude by examining plant models bridging different scales and considering the future prospects of plant systems biology.  相似文献   

16.
Manufacturing systems design involves the solution of a complex series of interrelated problems. This complexity will increase in the future as manufacturing practices change to meet increased global competition. Research within manufacturing systems design has mainly been focused on finding improved models for solving particular problems, or extending existing modeling techniques. This has resulted in numerous modeling tools being available to support manufacturing systems design. However, little research work has been carried out into consolidating the existing theories and models. As a result, a large body of this work has not been applied in industry. Model management has evolved as a research area which investigates methods for storing, modifying, and manipulating models. This article describes a prototype model management system for manufacturing systems design. The objective here is not to develop “another” decision support system for manufacturing design, but to illustrate, through the development of a prototype system, a number of key ideas of how concepts from the area of model management systems can be used to support manufacturing systems design. The prototype model management system utilizes the structured modeling framework and uses an extended version of the structured modeling language. An important aspect of the prototype model management system is the incorporation of the model development task, thus allowing the system to be easily updated and adapted. The prototype system was evaluated using a range of queueing network models for manufacturing systems design.  相似文献   

17.
The spread of infectious diseases at the global scale is mediated by long-range human travel. Our ability to predict the impact of an outbreak on human health requires understanding the spatiotemporal signature of early-time spreading from a specific location. Here, we show that network topology, geography, traffic structure and individual mobility patterns are all essential for accurate predictions of disease spreading. Specifically, we study contagion dynamics through the air transportation network by means of a stochastic agent-tracking model that accounts for the spatial distribution of airports, detailed air traffic and the correlated nature of mobility patterns and waiting-time distributions of individual agents. From the simulation results and the empirical air-travel data, we formulate a metric of influential spreading--the geographic spreading centrality--which accounts for spatial organization and the hierarchical structure of the network traffic, and provides an accurate measure of the early-time spreading power of individual nodes.  相似文献   

18.
Background: In systems biology, the dynamics of biological networks are often modeled with ordinary differential equations (ODEs) that encode interacting components in the systems, resulting in highly complex models. In contrast, the amount of experimentally available data is almost always limited, and insufficient to constrain the parameters. In this situation, parameter estimation is a very challenging problem. To address this challenge, two intuitive approaches are to perform experimental design to generate more data, and to perform model reduction to simplify the model. Experimental design and model reduction have been traditionally viewed as two distinct areas, and an extensive literature and excellent reviews exist on each of the two areas. Intriguingly, however, the intrinsic connections between the two areas have not been recognized.Results: Experimental design and model reduction are deeply related, and can be considered as one unified framework. There are two recent methods that can tackle both areas, one based on model manifold and the other based on profile likelihood. We use a simple sum-of-two-exponentials example to discuss the concepts and algorithmic details of both methods, and provide Matlab-based code and implementation which are useful resources for the dissemination and adoption of experimental design and model reduction in the biology community.Conclusions: From a geometric perspective, we consider the experimental data as a point in a high-dimensional data space and the mathematical model as a manifold living in this space. Parameter estimation can be viewed as a projection of the data point onto the manifold. By examining the singularity around the projected point on the manifold, we can perform both experimental design and model reduction. Experimental design identifies new experiments that expand the manifold and remove the singularity, whereas model reduction identifies the nearest boundary, which is the nearest singularity that suggests an appropriate form of a reduced model. This geometric interpretation represents one step toward the convergence of experimental design and model reduction as a unified framework.  相似文献   

19.
This article investigates an epidemic spreading among several locations through a transportation system, with a hub connecting these locations. Public transportation is not only a bridge through which infections travel from one location to another but also a place where infections occur since individuals are typically in close proximity to each other due to the limited space in these systems. A mathematical model is constructed to study the spread of an infectious disease through such systems. A variant of the next generation method is proposed and used to provide upper and lower bounds of the basic reproduction number for the model. Our investigation indicates that increasing transportation efficiency, and improving sanitation and ventilation of the public transportation system decrease the chance of an outbreak occurring. Moreover, discouraging unnecessary travel during an epidemic also decreases the chance of an outbreak. However, reducing travel by infectives while allowing susceptibles to travel may not be enough to avoid an outbreak.  相似文献   

20.

Motivation

A grand challenge in the modeling of biological systems is the identification of key variables which can act as targets for intervention. Boolean networks are among the simplest of models, yet they have been shown to adequately model many of the complex dynamics of biological systems. In our recent work, we utilized a logic minimization approach to identify quality single variable targets for intervention from the state space of a Boolean network. However, as the number of variables in a network increases, the more likely it is that a successful intervention strategy will require multiple variables. Thus, for larger networks, such an approach is required in order to identify more complex intervention strategies while working within the limited view of the network’s state space. Specifically, we address three primary challenges for the large network arena: the first challenge is how to consider many subsets of variables, the second is to design clear methods and measures to identify the best targets for intervention in a systematic way, and the third is to work with an intractable state space through sampling.

Results

We introduce a multiple variable intervention target called a template and show through simulation studies of random networks that these templates are able to identify top intervention targets in increasingly large Boolean networks. We first show that, when other methods show drastic loss in performance, template methods show no significant performance loss between fully explored and partially sampled Boolean state spaces. We also show that, when other methods show a complete inability to produce viable intervention targets in sampled Boolean state spaces, template methods maintain significantly consistent success rates even as state space sizes increase exponentially with larger networks. Finally, we show the utility of the template approach on a real-world Boolean network modeling T-LGL leukemia.

Conclusions

Overall, these results demonstrate how template-based approaches now effectively take over for our previous single variable approaches and produce quality intervention targets in larger networks requiring sampled state spaces.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号