共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating patterns of genetic variation in hybridizing species provides an opportunity to understand the impact of natural selection on intraspecific genetic variability and interspecific gene exchange. The Atlantic eels Anguilla rostrata and A. anguilla each occupy a large heterogeneous habitat upon which natural selection could differentially shape genetic variation. They also produce viable hybrids only found in Iceland. However, the possible footprint of natural selection on patterns of genetic variation within species and introgressive hybridization in Icelandic eels has never been assessed. We revisited amplified fragment length polymorphism data collected previously using population genomics and admixture analyses to test if (i) genetic variation could be influenced by non-neutral mechanisms at both the intra- and interspecific levels, and if (ii) selection could shape the spatio-temporal distribution of Icelandic hybrids. We first found candidate loci for directional selection within both species. Spatial distributions of allelic frequencies displayed by some of these loci were possibly related with the geographical patterns of life-history traits in A. rostrata , and could have been shaped by natural selection associated with an environmental gradient along European coasts in A. anguilla . Second, we identified outlier loci at the interspecific level. Non-neutral introgression was strongly suggested for some of these loci. We detected a locus at which typical A. rostrata allele hardly crossed the species genetic barrier, whereas three other loci showed accelerated patterns of introgression into A. anguilla in Iceland. Moreover, the level of introgression at these three loci increased from the glass eel to the yellow eel stage, supporting the hypothesis that differential survival of admixed genotypes partly explains the spatio-temporal pattern of hybrid abundance previously documented in Iceland. 相似文献
2.
Levels of genetic differentiation between populations can be highly variable across the genome, with divergent selection contributing to such heterogeneous genomic divergence. For example, loci under divergent selection and those tightly physically linked to them may exhibit stronger differentiation than neutral regions with weak or no linkage to such loci. Divergent selection can also increase genome‐wide neutral differentiation by reducing gene flow (e.g. by causing ecological speciation), thus promoting divergence via the stochastic effects of genetic drift. These consequences of divergent selection are being reported in recently accumulating studies that identify: (i) ‘outlier loci’ with higher levels of divergence than expected under neutrality, and (ii) a positive association between the degree of adaptive phenotypic divergence and levels of molecular genetic differentiation across population pairs [‘isolation by adaptation’ (IBA)]. The latter pattern arises because as adaptive divergence increases, gene flow is reduced (thereby promoting drift) and genetic hitchhiking increased. Here, we review and integrate these previously disconnected concepts and literatures. We find that studies generally report 5–10% of loci to be outliers. These selected regions were often dispersed across the genome, commonly exhibited replicated divergence across different population pairs, and could sometimes be associated with specific ecological variables. IBA was not infrequently observed, even at neutral loci putatively unlinked to those under divergent selection. Overall, we conclude that divergent selection makes diverse contributions to heterogeneous genomic divergence. Nonetheless, the number, size, and distribution of genomic regions affected by selection varied substantially among studies, leading us to discuss the potential role of divergent selection in the growth of regions of differentiation (i.e. genomic islands of divergence), a topic in need of future investigation. 相似文献
3.
Saldamando CI Miyaguchi S Tatsuta H Kishino H Bridle JR Butlin RK 《Journal of evolutionary biology》2005,18(3):703-712
Knowledge of the genetic basis of divergence in mating signal characters that contribute to reproductive isolation is critical to understanding speciation. Here, we describe a semi-automated system for characterizing grasshopper acoustic signals. We used this system to study the genetic basis of divergence in three male calling song components [echeme (EL), syllable (SL) and phrase (PL) lengths] between Chorthippus brunneus and C. jacobsi, two species of grasshoppers that hybridize in northern Spain. We also studied the number of pegs in the stridulatory file. For all characters, additive effects accounted for most of the genetic differentiation between species. However, the three song components also showed small but significant epistatic effects. No sex linkage was detected. Wright-Castle-Lande estimates of the minimum numbers of genetic factors underlying song and peg number divergence were low: peg number (n(e)=5.87+/-5.84), SL (n(e)=2.37+/-4.79) and PL (n(e)=0.87+/-0.86). On the other hand, EL appeared to be controlled by many genes. These results suggest that divergence in SL and PL might be driven by sexual selection whereas EL might not be under selection. This is consistent with experimental results on female song preference in related species. However, the fact that few factors appear to underlie the differences in peg number is surprising. Peg number is not closely related to song characteristics. It often varies between closely related grasshopper species and it has been assumed to be a neutral character. The biometrical approaches used here tend to underestimate the number of factors influencing a trait but provide valuable background for subsequent quantitative trait loci analyses. 相似文献
4.
Cryptic trysts, genomic mergers, and plant speciation 总被引:4,自引:0,他引:4
5.
Comparative analysis of introgression at three marker classes: a case study in a stocked population of brown trout 总被引:3,自引:0,他引:3
Comparative analysis of protein loci, microsatellite and mtDNA markers revealed generally comparable estimates for introgression and apparent admixture rates in stocked brown trout populations at two sites in the River Doubs (Rhône dainage, Switzerland), which are 10 km apart and which belong to the same management unit. At one site, a significant deviation between mtDNA and nuclear markers could be explained by stocking of F1 hybrids originating from crosses between hatchery females and males from the local population. Substantial differences between diagnostic protein loci and protein loci having non-fixed private alleles indicated that caution must be exercised when using genetic markers not strictly diagnostic for the distinction of the populations under investigation. Congruent estimates of introgression and apparent admixture rates between diagnostic protein loci and presumed diagnostic microsatellite loci suggest that the latter can be regarded as reliable genetic markers for the estimation of introgression in Mediterranean brown trout populations stocked with trout of Atlantic origin. Significant differences in introgression and apparent admixture rates between the two sites and between age-classes of one study site were observed. Introgression is suggested to depend on environmental factors. Significantly lower introgression rates in age-class 2+ years as compared to juvenile trout might further indicate that introduced Atlantic brown trout and hybrids decrease in proportion between age-classes 1+ and 2+ years. 相似文献
6.
Gene flow, adaptive population divergence and comparative population structure across loci 总被引:2,自引:1,他引:2
Robert G. Latta 《The New phytologist》2004,161(1):51-58
7.
Local adaptation to contrasting biotic or abiotic environments is an important evolutionary step that presumably precedes floral diversification at the species level, yet few studies have demonstrated the adaptive nature of intraspecific floral divergence in wild plant populations. We combine a population‐genomic approach with phenotypic information on floral traits to examine whether the differentiation in metric floral traits exhibited by 14 populations of the southern Spanish hawk moth‐pollinated violet Viola cazorlensis reflects adaptive divergence. Screening of many amplified fragment length polymorphism (AFLP) loci using a multiple‐marker‐based neutrality test identified nine outlier loci (2.6% of the total) that departed from neutral expectations and were potentially under selection. Generalized analysis of molecular variance revealed significant relationships between genetic distance and population divergence in three floral traits when genetic distance was based on outlier loci, but not when it was based on neutral ones. Population means of floral traits were closely correlated with population scores on the first principal coordinate axis of the genetic distance matrix using outlier loci, and with the allelic frequencies of four of the outlier loci. Results strongly support the adaptive nature of intraspecific floral divergence exhibited by V. cazorlensis and illustrate the potential of genome scans to identify instances of adaptive divergence when used in combination with phenotypic information. 相似文献
8.
9.
Species with a wide geographical distribution are often composed of distinct subgroups which may be adapted to their local environment. European trout (Salmo trutta species complex) provide an example of such a complex consisting of several genetically and ecologically distinct forms. However, trout populations are strongly influenced by human activities, and it is unclear to what extent neutral and adaptive genetic differences have persisted. We sampled 30 Swiss trout populations from heterogeneous environments along replicated altitudinal gradients in three major European drainages. More than 850 individuals were genotyped at 18 microsatellite loci which included loci diagnostic for evolutionary lineages and candidate markers associated with temperature tolerance, reproductive timing and immune defence. We find that the phylogeographic structure of Swiss trout populations has not been completely erased by stocking. Distinct genetic clusters corresponding to the different drainages could be identified, although nonindigenous alleles were clearly present, especially in the two Mediterranean drainages. We also still detected neutral genetic differentiation within rivers which was often associated with the geographical distance between populations. Five loci showed evidence of divergent selection between populations with several drainage-specific patterns. Lineage-diagnostic markers, a marker linked to a quantitative trait locus for upper temperature tolerance in other salmonids and a marker linked to the major histocompatibility class I gene were implicated in local adaptation and some patterns were associated with altitude. In contrast, tentative evidence suggests a signal of balancing selection at a second immune relevant gene (TAP2). Our results confirm the persistence of both neutral and potentially adaptive genetic differences between trout populations in the face of massive human-mediated dispersal. 相似文献
10.
Good JM Hird S Reid N Demboski JR Steppan SJ Martin-Nims TR Sullivan J 《Molecular ecology》2008,17(5):1313-1327
Models that posit speciation in the face of gene flow are replacing classical views that hybridization is rare between animal species. We use a multilocus approach to examine the history of hybridization and gene flow between two species of chipmunks ( Tamias ruficaudus and T. amoenus ). Previous studies have shown that these species occupy different ecological niches and have distinct genital bone morphologies, yet appear to be incompletely isolated reproductively in multiple areas of sympatry. We compared data from four sequenced nuclear loci and from seven microsatellite loci to published cytochrome b sequences. Interspecific gene flow was primarily restricted to introgression of the T. ruficaudus mitochondrial genome into a sympatric subspecies of T. amoenus , T. a. canicaudus , with the four sequenced nuclear loci showing little to no interspecific allele sharing. Microsatellite data were consistent with high levels of differentiation between the species and also showed no current gene flow between broadly sympatric populations of T. a. canicaudus and T. ruficaudus . Coalescent analyses date the mtDNA introgression event from the mid-Pleistocene to late Pliocene. Overall, these data indicate that introgression has had a minimal impact on the nuclear genomes of T. amoenus and T. ruficaudus despite multiple independent hybridization events. Our findings challenge long-standing assumptions on patterns of reproductive isolation in chipmunks and suggest that there may be other examples of hybridization among the 23 species of Tamias that occur in western North America. 相似文献
11.
The geographic ranges of rhesus ( Macaca mulatta ) and cynomolgus ( M. fascicularis ) macaques adjoin in Indochina where they appear to hybridize. We used published and newly generated DNA sequences from 19 loci spanning ~20 kb to test whether introgression has occurred between these macaque species. We studied introgression at the level of nuclear DNA and distinguished between incomplete lineage sorting of ancestral polymorphisms or interspecific gene flow. We implemented a divergence population genetics approach by fitting our data to an isolation model implemented in the software IMa. The model that posits no gene flow from the rhesus into the cynomolgus macaque was rejected ( P = 1.99 × 10−8 ). Gene flow in this direction was estimated as 2 Nm ~1.2, while gene flow in the reverse direction was nonsignificantly different from zero ( P = 0.16). The divergence time between species was estimated as ~1.3 million years. Balancing selection, a special case of incomplete sorting, was taken into consideration, as well as potential crossbreeding in captivity. Parameter estimates varied between analyses of subsets of data, although we still rejected isolation models. Geographic sampling of the data, where samples of cynomolgus macaques derived from Indochina were excluded, revealed a lost signature of gene flow, indicating that interspecific gene flow is restricted to mainland Indochina. Our results, in conjunction with those by others, justify future detailed analyses into the genetics of reproductive barriers and reticulate evolution in these two genome-enabled primates. Future studies of the natural hybridization between rhesus and cynomolgus macaques would expand the repertoire of systems available for speciation studies in primates. 相似文献
12.
Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists 总被引:7,自引:2,他引:7
Recently, the amplified fragment length polymorphism (AFLP) technique has gained a lot of popularity, and is now frequently applied to a wide variety of organisms. Technical specificities of the AFLP procedure have been well documented over the years, but there is on the contrary little or scattered information about the statistical analysis of AFLPs. In this review, we describe the various methods available to handle AFLP data, focusing on four research topics at the population or individual level of analysis: (i) assessment of genetic diversity; (ii) identification of population structure; (iii) identification of hybrid individuals; and (iv) detection of markers associated with phenotypes. Two kinds of analysis methods can be distinguished, depending on whether they are based on the direct study of band presences or absences in AFLP profiles ('band-based' methods), or on allelic frequencies estimated at each locus from these profiles ('allele frequency-based' methods). We investigate the characteristics and limitations of these statistical tools; finally, we appeal for a wider adoption of methodologies borrowed from other research fields, like for example those especially designed to deal with binary data. 相似文献
13.
BACKGROUND AND AIMS: Hybridization is an important evolutionary phenomenon, and therefore a detailed understanding of the dynamics of interspecific gene flow and resulting morphological and genetic patterns is of widespread interest. Here hybridization between the polyploids Cardamine pratensis and C. raphanifolia at four localities is explored. Using different types of data, the aim is to provide simultaneous and direct comparisons between genotype and phenotype variation patterns in the studied hybrid populations. METHODS: Evidence of hybridization has been gathered from morphology, molecular markers (amplified fragment length polymorphism and chloroplast DNA sequences), pollen viability, karyology and nuclear DNA content. KEY RESULTS: All data support extensive gene flow occurring in the hybrid populations. A wide range of morphological and genetic variation is observed, which includes both parental and intermediate types. Unbalanced pollen fertility and several ploidy levels are recorded. CONCLUSIONS: Incongruence reported between genotype and phenotype suggests that parental phenotypes are affected by introgression, and intermediate hybrid phenotypes can be genetically closer to one of the parents. Thus, it is evident that morphology, when used alone, can be misleading for interpreting hybridization, and critical evaluation of other data is needed. 相似文献
14.
Plant hormones are small molecules that play important roles throughout the life span of a plant,known as auxin,gibberellin,cytokinin,abscisic acid,ethylene,jasmonic acid,salicylic acid,and brassinosteroid.Genetic and molecular studies in the model organism Arabidopsis thaliana have revealed the individual pathways of various plant hormone responses.In this study,we selected 479 genes that were convincingly associated with various hormone actions based on genetic evidence.By using these 479 genes as queries,a genome-wide search for their orthoiogues in several species(microorganisms,plants and animals) was performed.Meanwhile,a comparative analysis was conducted to evaluate their evolutionary relationship.Our analysis revealed that the metabolisms and functions of plant hormones are generally more sophisticated and diversified in higher plant species.In particular,we found that several phytohormone receptors and key signaling components were not present in lower plants or animals.Meanwhile,as the genome complexity increases,the orthologne genes tend to have more copies and probably gain more diverse functions.Our study attempts to introduce the classification and phylogenic analysis of phytohormone related genes,from metabolism enzymes to receptors and signaling components,in different species. 相似文献
15.
Zhiqiang Jiang Hongwei Guo Laboratory of Protein Engineering Plant Genetic Engineering College of Life Sciences Peking University Beijing China 《Acta Genetica Sinica》2010,(4)
Plant hormones are small molecules that play important roles throughout the life span of a plant,known as auxin,gibberellin,cyto-kinin,abscisic acid,ethylene,jasmonic acid,salicylic acid,and brassinosteroid.Genetic and molecular studies in the model organism Arabidopsis thaliana have revealed the individual pathways of various plant hormone responses.In this study,we selected 479 genes that were convincingly associated with various hormone actions based on genetic evidence.By using these 479 genes as querie... 相似文献
16.
BACKGROUND AND AIMS: Serpentine soils provide a highly selective substrate for plant colonization and growth and represent an ideal system for studying the evolution of plant-ecotypes. In the present study the aim was to identify the genetic architecture of morphological traits distinguishing serpentine and non-serpentine ecotypes of Silene vulgaris. METHODS: Using an F(2) mapping population derived from an intraspecific cross between a serpentine and a non-serpentine ecotype of S. vulgaris, the genetic architecture of 12 morphological traits was explored using a quantitative trait locus (QTL) analysis. KEY RESULTS: The QTL analysis identified a total of 49 QTLs, of which 24 were classified as major QTLs. The mean number of QTLs per trait category was found to correspond well with numbers reported in the literature for similar crosses. Clustering of QTLs for different traits was found on several linkage groups. CONCLUSIONS: Morphological traits that differentiate the two ecotypes are strongly correlated, presumably as a consequence of the joint effects of extensive linkage of QTLs for different traits and directional selection. The signature of consistent directional selection was found for leaf and shoot trait divergence. Intraspecific ecotype differences in S. vulgaris were found to be distributed across the entire genome. The study shows that QTL analyses on non-model organisms can provide novel insights into the genetic basis of plant diversification. 相似文献
17.
18.
The adaptive potential of a population defines its importance for species survival in changing environmental conditions such as global climate change. Very few empirical studies have examined adaptive potential across species'' ranges, namely, of edge vs core populations, and we are unaware of a study that has tested adaptive potential (namely, variation in adaptive traits) and measured performance of such populations in conditions not currently experienced by the species but expected in the future. Here we report the results of a Triticum dicoccoides population study that employed transplant experiments and analysis of quantitative trait variation. Two populations at the opposite edges of the species range (1) were locally adapted; (2) had lower adaptive potential (inferred from the extent of genetic quantitative trait variation) than the two core populations; and (3) were outperformed by the plants from the core population in the novel environment. The fact that plants from the species arid edge performed worse than plants from the more mesic core in extreme drought conditions beyond the present climatic envelope of the species implies that usage of peripheral populations for conservation purposes must be based on intensive sampling of among-population variation. 相似文献
19.
20.
The relative roles of gene flow and natural selection in maintaining species differentiation have been a subject of debate for some time. The traditional view is that gene flow constrains adaptive divergence and maintains species cohesiveness. Alternatively, ecological speciation posits that the reverse is true: that adaptive ecological differentiation constrains gene flow. In this study, we examine gene flow and population differentiation among populations of two species of the Hawaiian silversword alliance, Dubautia arborea and D. ciliolata. We compare divergence in putatively neutral microsatellite markers with divergence in leaf morphometric traits, which may be selectively important or physiologically linked to selectively important traits. Gene flow between populations was found to be significant in only one of the two species, D. arborea. Leaf morphometric differentiation between species was significant, though not among populations within species. No evidence of effective genetic introgression was observed between apparently 'pure' populations of these species. Gene flow as measured by microsatellites was not correlated with geographic distance between populations, but was correlated with the linear placement of the widest part of the leaf. Because these two species are interfertile, as demonstrated by the presence of active hybrid zone, the lack of genetic introgression and the maintenance of species boundaries may be associated with natural selection on differential habitat. 相似文献