首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liver cirrhosis was produced in the rat by combined carbon tetrachloride-phenobarbitone treatment, and the microcirculation in the cirrhotic liver was observed by a quantitative in vivo transillumination technique. The total sinusoidal flow in the observed region of the cirrhotic liver did not differ significantly from that in the normal liver, despite the reduced number of sinusoids and the increased portal venous pressure. The cirrhotic liver also presented a fast-velocity population of portal and hepatic venules and sinusoids in addition to the normal slow-velocity population. The possible mechanism of these "arterialized" microvessels is discussed.  相似文献   

2.

Introduction

The compensatory increase in hepatic arterial flow with a decrease in portal venous flow is known as the hepatic arterial buffer response. In cirrhosis with elevated portal pressure, the vascular resistance of the hepatic artery is decreased. Whether this lower resistance of the hepatic artery is a consequence of portal hypertension or not remains unknown.

Study Aim

The aim of the study was to investigate the hepatic arterial resistance and response to vasoconstriction in cirrhosis without portal hypertension (normal portal resistance).

Methods

Cirrhosis was induced by CCl4-inhalation for 8 weeks (8W, normal portal resistance) and for 12–14 weeks (12W, elevated portal resistance). Bivascular liver perfusion was performed at 8W or 12W and dose response curves of methoxamine were obtained in the presence or absence of LNMMA (nitric oxide synthase blocker). Vascular resistances of the hepatic artery (HAR), portal vein (PVR) and sinusoids (SVR) were measured. Western Blot (WB) and Immunohistochemistry (IHC) were done to measure eNOS and HIF 1a expression.

Results

HAR in both groups of cirrhotic animals (8W and 12W) were lower compared to controls. Dose response curves to methoxamine revealed lower HAR in both cirrhotic models (8W and 12W) regardless the magnitude of portal resistance. LNMMA corrected the dose response curves in cirrhosis (8W and 12W) to control. WB and IHC show increased protein expression of eNOS and HIF1a in 8W and 12W.

Conclusion

Hepatic arterial resistance is decreased in cirrhosis independent of portal resistance. Vasodilation of the hepatic artery in cirrhosis seems to be influenced by hypoxia rather than increase in portal resistance. Nitric oxide is the main vasodilator.  相似文献   

3.
Hemodynamic data were obtained in 13 cirrhotic patients with severe portal hypertension, undergoing combined hepatic vein, umbilicoportal vein, and superior mesenteric artery catheterization. The relative clearance of indocyanine green, the portohepatic gradient (difference between the free portal venous pressure and the free hepatic venous pressure), and the estimated hepatic blood flow were measured. The portal fraction (PF) of total hepatic blood flow was calculated in all patients using indicator dilution curves obtained from the portal bifurcation, a right hepatic vein, and when possible a left hepatic vein (six cases) after injection of 51Cr-labeled red blood cells (51Cr RBC) into the superior mesenteric artery. Flows were overestimated because of loss of indicator through spontaneous portosystemic shunts; however, the ratio between hepatic and portal indicator dilution curves can be used to calculate the portal fraction of total hepatic blood flow since no extrahepatic shunts existed after the bifurcation of the portal vein (as shown on portography). In 10 patients, 15 series of curves were calculable and the PF varied between 30.1 and 100% (mean ± SE: 71.1 ± 6.2%). In the three other patients, only delayed activity from recirculation was detected from portal and hepatic vein samples and PF was 0%; in these three cases, portography and arteriography revealed spontaneous portacaval shunting with reverse and/or stagnant circulation in the portal vein. In the 13 patients, no correlation existed between PF and the relative clearance of indocyanine green or the portohepatic gradient, parameters generally used as indices of severity in cirrhosis. In 10 patients, no correlation was found between PF and the estimated hepatic blood flow.  相似文献   

4.
Hepatotrophic effect of pancreatic and intestinal venous blood was studied in rats with mesocaval or distal splenocaval shunt following ligation of a branch of the portal vein supplying 70% of liver mass. Because 2/3 of liver mass was deprived of portal flow the nonligated liver lobes were not hypoperfused due to shunt procedure. During the first three postoperative days the DNA synthesis, mitotic index, and changes in relative weights were measured in both ligated (atrophied) and nonligated (compensatory hyperplasia) parts of the liver. It was found, that the restorative capacity of the liver existed in rats with selective portasystemic shunts. The stimulus to growth was greater in lobes supplied by intestinal venous blood compared to those perfused by pancreatic effluent. The increase in DNA synthesis occurred in lobes undergoing atrophy and the intensity of this response was also dependent on type of shunt since recirculation of intestinal blood by way of the hepatic artery inhibited atrophy to a greater extent than pancreatic venous effluent. Although the patency of arterial branches was confirmed the ligated lobes showed necrotic lesions. Systemic recirculation of intestinal venous blood far more inhibited necrosis than pancreatic venous blood.  相似文献   

5.
OBJECTIVE: To observe the microvasculature in normal human liver. STUDY DESIGN: Four autopsy livers cut into 50-micron-thick sections were observed by confocal laser scanning microscopy. Immunofluorescence was performed using anti-alpha smooth muscle actin (alpha-SMA) antibody. In addition, double immunofluorescence was performed on the other sections using antilysozyme antibody. The routes from the portal vein branches and hepatic artery branches to the sinusoids were defined as follows: portal venule, septal branch, inlet venule, hepatic arteriole and terminal hepatic arteriole. RESULTS: The reactivity of the walls of septal branches and inlet venule was positive for alpha-SMA. Lysozyme-positive cells (Kupffer cells) were dense in the sinusoids but were sparse in the septal branches and absent from the inlet venules. Terminal hepatic arterioles were observed along the septal branch, and the anastomoses between them were observed at the peripheral portion. No routes opening directly from the terminal hepatic arteriole into the sinusoids or arterioportal anastomoses in the portal tract were observed on alpha-SMA-stained sections. CONCLUSION: Regulation of the microcirculation in human liver may be performed by the smooth muscle layer of both peripheral portal and hepatic arterial routes.  相似文献   

6.
Reduced sinusoidal endothelial nitric oxide (NO) production contributes to increased intrahepatic resistance and portal hypertension after liver injury. We hypothesized that V-PYRRO/NO, an NO donor prodrug metabolized "specifically" in the liver, would reduce portal venous pressure (PVP) without affecting the systemic vasculature. Liver injury was induced in male BALB/c mice by weekly CCl(4) gavage. PVP and mean arterial pressure were recorded during intravenous administration of V-PYRRO/NO. In vivo microscopy was used to monitor sinusoidal diameter and flow during drug administration. Mean PVP was increased in CCl(4)-treated mice compared with sham-treated mice. In dose-response experiments, the minimum dose of PYRRO/NO required to acutely lower PVP by 20%, the amount believed to yield a clinically meaningful outcome, was 200 nmol/kg. This dose decreased portal pressure in cirrhotic (23.4 +/- 2.0%, P < 0.001 vs. vehicle) and sham-treated (19.5 +/- 2.3%, P < 0.001 vs. vehicle) animals by a similar magnitude. This concentration also led to dilation of hepatic sinusoids and an increase in sinusoidal volumetric flow, consistent with a reduction of intrahepatic resistance. The effect of V-PYRRO/NO on mean arterial pressure was significant at all concentrations tested, including the lowest, 30 nmol/kg (P < 0.001 vs. vehicle for all doses). We conclude that V-PYRRO/NO had widespread vascular effects and, as such, is unlikely to be suitable for treatment of portal hypertension. As the potential of this or other similar compounds for treatment of portal hypertension is evaluated, effects on the systemic vasculature will also need to be considered.  相似文献   

7.
We have previously shown that intrasplenic fluid extravasation is important in controlling blood volume. We proposed that, because the splenic vein flows in the portal vein, portal hypertension would increase splenic venous pressure and thus increase intrasplenic microvascular pressure and fluid extravasation. Given that the rat spleen has no capacity to store/release blood, intrasplenic fluid extravasation can be estimated by measuring the difference between splenic arterial inflow and venous outflow. In anesthetized rats, partial ligation of the portal vein rostral to the junction with the splenic vein caused portal venous pressure to rise from 4.5 +/- 0.5 to 12.0 +/- 0.9 mmHg (n = 6); there was no change in portal venous pressure downstream of the ligation, although blood flow in the liver fell. Splenic arterial flow did not change, but the arteriovenous flow differential increased from 0.8 +/- 0.3 to 1.2 +/- 0.1 ml/min (n = 6), and splenic venous hematocrit rose. Mean arterial pressure fell (101 +/- 5.5 to 95 +/- 4 mmHg). Splenic afferent nerve activity increased (5.6 +/- 0.9 to 16.2 +/- 0.7 spikes/s, n = 5). Contrary to our hypothesis, partial ligation of the portal vein caudal to the junction with the splenic vein (same increase in portal venous pressure but no increase in splenic venous pressure) also caused the splenic arteriovenous flow differential to increase (0.6 +/- 0.1 to 1.0 +/- 0.2 ml/min; n = 8). The increase in intrasplenic fluid efflux and the fall in mean arterial pressure after rostral portal vein ligation were abolished by splenic denervation. We propose there to be an intestinal/hepatic/splenic reflex pathway, through which is mediated the changes in intrasplenic extravasation and systemic blood pressure observed during portal hypertension.  相似文献   

8.
Hepatic blood vessels consist of the hepatic artery and three types of venous channels (the portal veins, the sinusoids, and the hepatic veins). This study was undertaken to analyze, by immunohistochemistry, connexin expression throughout the vascular development of the fetal mouse liver with special attention being given to portal vein development. In the adult liver, connexin37 and connexin40 were expressed in the endothelium of the portal vein and hepatic artery, but not in those of the hepatic vein and sinusoids. Connexin43 was expressed in mesothelial cells and smooth muscle cells of the portal veins. The preferential expression of connexin37 and connexin40 in portal veins was seen throughout liver development, including its primordium formation stage (10.5-day or 11.5-day stage), although connexin37 expression was transiently seen in free nonparenchymal cells in fetal stages. The differentiation of each blood vessel in the hepatic vascular system may occur in early developmental stages, soon after hepatic primordium formation. This work was supported by Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan.  相似文献   

9.
Previous studies showed two deviations from the predictions of the undistributed parallel tube model for hepatic uptake of substrates: a small deviation at high flows and a large deviation at low flows. We have examined whether these deviations could be described by a single correction factor. In cats anesthetized with pentobarbital, a hepatic venous long-circuit technique with an extracorporeal reservoir was used to vary portal flow and hepatic venous pressure, and allow repeated sampling of arterial, portal, and hepatic venous blood without depletion of the cat's blood volume. Hepatic uptake of ethanol was measured over a wide range of blood flows and when intrahepatic pressure was increased at low flows. This uptake could be described by the parallel tube model with a correction for hepatic blood flow: Uptake = Vmax max.(1 - e-kF).c/(Km + c). In 22 cats, Vmax max = 90 +/- 5 mumols/(min.100 g liver), k = 0.021 +/- 0.0015 when flow (F) was in millilitres per minute per 100 g liver, and Km = 150 +/- 20 microM when c is the log mean sinusoidal concentration. (1 - e-kF) represents the proportion of sinusoids perfused and metabolically active. A dynamic interpretation of this proportion is related to intermittency (derecruitment) of sinusoidal flow. Half the sinusoids were perfused at a flow of 33 mL/(min.100 g liver) and the liver was essentially completely perfused (greater than 95%) at the normal flow of 150 mL/(min.100 g liver). Derecruitment was not changed by raising hepatic venous pressure, and it was not related to hepatic venous resistance.  相似文献   

10.

Background

Circulating miRNA-34a is increased in blood of patients with different liver diseases when compared to healthy controls. However, the origin of miRNA-34a and its possible relationship with hemodynamics and outcome in cirrhotic patients with portal hypertension is unknown. We analyzed the levels of miRNA-34a in cirrhotic patients with severe portal hypertension.

Methods

We included 60 cirrhotic patients receiving TIPS for prevention of rebleeding and/or therapy-refractory ascites. miRNA-34a levels were measured using qPCR and normalized by SV-40 in the portal and hepatic venous blood of these patients taken at TIPS procedure. Hemodynamic and clinical parameters were assessed before TIPS and during follow-up.

Results

Levels of miRNA-34a were higher in the hepatic vein than in the portal vein. Circulating miRNA-34a in the hepatic vein correlated with ALT, CHE and sodium excretion after TIPS. miRNA-34a showed no correlation with portal pressure, but its levels in the portal vein correlated inversely with the congestion index. Interestingly, the levels of miRNA-34a in the portal and hepatic vein showed inverse correlation with arterial pressure. Furthermore, levels of miRNA-34a in the hepatic vein had a predictive value for survival, but MELD, creatinine at short-time follow-up 14 days after TIPS-insertion and portal pressure after TIPS performed better.

Conclusion

This study demonstrates for the first time, that miRNA-34a may originate to a large extent from the liver. Even though higher levels of miRNA-34a are possibly associated with better survival at long-term follow-up in cirrhotic patients with severe portal hypertension receiving TIPS, classical prognostic parameters predict the survival better.  相似文献   

11.
The effect of surgical end-to-side portacaval anastomosis (PCSA) on systemic and splanchnic circulation has been studied in cirrhotic rats with portal hypertension (CCl4-phenobarbital method) and in control animals. Hemodynamics have been measured using the microsphere technique, with a reference sample for the systemic hemodynamic measurements, and intrasplenic injection for portal systemic shunting rate measurements. Compared with controls, sham-operated (SO) cirrhotic rats showed a hyperdynamic circulation with increased cardiac output (CO) and decreased mean arterial pressure and peripheral resistances. PCSA in control rats induced only a small change in systemic hemodynamics, with parallel decreases in arterial pressure and peripheral resistances, and a small, nonsignificant increase in CO. In cirrhotic rats, PCSA induced a decrease of CO to values similar to those of control rats, with an increase in total peripheral resistances. PCSA induced an increase in hepatic arterial blood flow in control and in cirrhotic rats, portal pressure becoming in this latter group not different from that of control rats. Blood flow to splanchnic organs was higher in SO cirrhotic than in SO control animals. Thus portal venous inflow was also increased in SO cirrhotic rats. PCSA induced an increase in portal venous inflow in control rats, which was only significant in cirrhotic rats when expressed as a percentage of CO. In SO control animals, a significant correlation was observed between total peripheral resistances and splanchnic arteriolar resistances and between CO and splanchnic blood flow. These correlations were not observed in cirrhotic rats. These results do not support the hypothesis that hyperdynamic circulation shown by cirrhotic rats is based on increases in splanchnic blood flow and (or) massive portal systemic shunting.  相似文献   

12.
A lumped parameter mathematical model to describe the propulsion of blood in the splanchnic circulation was developed by integrating the principles of mechanics and physiology. A set of governing equations by derived by specifically considering the contractility of the portal vein, hepatic vein, liver sinusoids, and of the draining lymphatics. These equations were then simulated on a computer. The present simulation results substantiate previous experimental observations that hepatic venous pressure leads to portal hypertension and increased liver interstitial fluid volume.  相似文献   

13.
Liver units were investigated in pig livers by means of histologic serial tracing, physical model building, and computer-aided three-dimensional imaging. Observations of the argyrophilic connective tissue skeleton were based mainly on the celloidin-embedded serial sections treated with silver impregnation. The parenchymal mass that clothed the initial segments of hepatic venous radicles was demarcated by fibrous septa which formed isolable units with two basic patterns: the simple hepatic lobule (SHL) and the compound hepatic lobule (CHL). Both lobule types presented regular limiting structures circumscribing each unit. Three-dimensional studies revealed that 25% of the lobules in a section belonged to the SHL type and 75% to the CHL type, the latter being predominant among the surface lobules. When considered in only two dimensions, however, the SHL-like lobules constituted the majority. Polygonal analysis disclosed that the pentagonal lobule was the most typical, instead of the "hexagonal" or "classic" lobule. The CHLs represented a multiaxial unit containing a system of venous tributaries in accordance with intralobular septation, whereas the SHLs were found with one axial vessel having a dendritic tendency at the incipient end; some SHLs were drained eccentrically by separate vessels into a sublobular vein. It was observed that, in dividing CHLs, whereas particular sinosoids were transformed into portal twigs, other sinusoids were changed into central venous tributaries. Fibrous deposition occurred along the septal-line sinusoids, bringing into view the septum-initiating plane. Fibroconnective tissue was supplied from the portal area and central (sublobular) adventitia, where portal triad structures and adventitial arterioles, respectively, were included. The findings of the present study facilitate the understanding of several characters of the lobules that have been reported previously, or occasionally postulated, such as the portal-central bridging tendency, the intralobular arterioles or ductules, the translobular artery or portal vein, the "portal-portal" or "portal-central" anastomoses, and the apposition of pericentral zone close to periportal zone. Based on differences in argyrophilia of sinusoidal reticulum, in proportion of lobule types, and in vasculature, the anatomic heterogeneity of liver unit was demonstrable in zonality, regionality, and locality.  相似文献   

14.
Recently we demonstrated higher galectin-3 in portal venous serum (PVS) compared to hepatic venous serum (HVS) in a small cohort of patients with normal liver function suggesting hepatic removal of galectin-3. Here, galectin-3 was measured by ELISA in PVS, HVS and systemic venous blood (SVS) of 33 patients with alcoholic liver cirrhosis and a larger cohort of 11 patients with normal liver function. Galectin-3 was cleared by the healthy but not the cirrhotic liver, and subsequently HVS and SVS galectin-3 levels were significantly increased in the patients with liver cirrhosis compared to controls. In healthy liver galectin-3 was produced by cholangiocytes and synthesis by hepatocytes was only observed in cirrhotic liver. Hepatic venous pressure gradient did not correlate with galectin-3 levels excluding hepatic shunting as the principal cause of higher SVS galectin-3. Galectin-3 was elevated in all blood compartments of patients with CHILD-PUGH stage C compared to patients with CHILD-PUGH stage A, and was higher in patients with ascites than patients without this complication. Galectin-3 was negatively associated with antithrombin-3 whose synthesis is reduced with worse liver function. Galectin-3 positively correlated with urea and creatinine, and PVS galectin-3 showed a negative association with creatinine clearance as an accepted measure of kidney function. To summarize in the current study systemic, portal and hepatic levels of galectin-3 were found to be negatively associated with liver function in patients with alcoholic liver cirrhosis and this may in part be related to impaired hepatic removal and/or increased synthesis in cirrhotic liver.  相似文献   

15.
Summary The cholinergic innervation of the human liver was studied. Slices (150–200m thick) of human liver and of the greater hepatic blood vessels (hepatic artery and vein, portal vein) were incubated in a solution of 6-hydroxydopamine (6-HDA) in order to obtain a selective degeneration of adrenergic nerves. Controls were prepared from samples incubated with buffer alone. The slices were cut on a cryostat into 15–20m thick sections and processed for the histochemical detection of cholinesterases.Cholinergic nerve fibres innervate the extra hepatic and the intrahepatic branches of the hepatic artery, the portal vein as well as the hepatic vein. Fewer cholinergic fibres innervate the hepatocytes and the hepatic sinusoids. The 6-HDA treatment does not seem to alter the pattern of the cholinergic innervation of the liver. The findings indicate the presence of a cholinergic parasympathetic innervation in the human liver.  相似文献   

16.
Vasoconstrictor agents may induce a decrease in hepatic vascular volume passively, by decreasing distending pressure, or actively, by stimulating contractile elements of capacitance vessels. Hepatic venular resistance was estimated in anesthetized rabbits from hepatic venular pressure (P(mu hv); by servo-null micropipette), inferior vena cava pressure, and total hepatic blood flow (F(hv); by ultrasound flow probe). Changes in liver volume were estimated from measures of liver lobe thickness. Angiotensin (ANG) II, endothelin (ET)-1, norepinephrine (NE), and vasopressin (VP) were infused into the portal vein at a constant rate for 5 min. We conclude that ANG II and NE induced active constriction of hepatic capacitance vessels, because the liver lobe thickness decreased significantly even though P(mu hv) and portal venous distending pressure (P(pv)) increased. All four agents increased splanchnic and hepatic venous resistances in similar proportions. With VP, P(mu hv) and P(pv) decreased, but with ET-1, P(mu hv) and P(pv) increased. However, lobe thickness was not significantly changed by either drug during the infusion compared with the 2-min control period. Thus VP and ET-1 have only minor effects on hepatic capacitance vessels. ET-1, at 0.04 microg. min(-1). kg body wt(-1), caused an increase in systemic arterial blood pressure, but erythrocyte movement through the sinusoids in some animals stopped.  相似文献   

17.
The role of beta-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 micrograms.min-1.kg-1), or isoproterenol (2.0 micrograms.min-1.kg-1), or histamine (4 micrograms.min-1.kg-1), or a combination of histamine and isoproterenol. Norepinephrine (an alpha- and beta 1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the beta-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.  相似文献   

18.
Systemic concentrations of interleukin-6 (IL-6) are elevated in patients with liver cirrhosis, and impaired hepatic uptake of IL-6 was suggested to contribute to higher levels in these patients. To test this hypothesis IL-6 was measured in portal venous serum (PVS), hepatic venous serum (HVS) and systemic venous serum (SVS) of 41 patients with liver cirrhosis and four patients with normal liver function. IL-6 was higher in PVS than HVS of all blood donors and about 43% of portal vein derived IL-6 was extracted by the healthy liver, and 6.3% by the cirrhotic liver demonstrating markedly impaired removal of IL-6 by the latter. Whereas in patients with CHILD-PUGH stage A IL-6 in HVS was almost 25% lower than in PVS, in patients with CHILD-PUGH stage C IL-6 was similarly abundant in the two blood compartments. Ascites is a common complication in cirrhotic patients and was associated with higher IL-6 levels in all blood compartments without significant differences in hepatic excretion. Hepatic venous pressure gradient did not correlate with the degree of hepatic IL-6 removal excluding hepatic shunting as the principal cause of impaired IL-6 uptake. Furthermore, patients with alcoholic liver cirrhosis had higher IL-6 in all blood compartments than patients with cryptogenic liver cirrhosis. Aetiology of liver cirrhosis did not affect hepatic removal rate indicating higher IL-6 synthesis in patients with alcoholic liver cirrhosis. In summary, the current data provide evidence that impaired hepatic removal of IL-6 is explained by hepatic shunting and liver dysfunction in patients with liver cirrhosis partly explaining higher systemic levels.  相似文献   

19.
The present study was undertaken to investigate hepatic microcirculatory response following partial portal vein ligation (PPVL) in rats. Portal pressure was markedly increased 2-6 wk after PPVL, but no significant reduction in sinusoidal perfusion and hepatocellular injury were detected. However, marked neovascularization was observed in PPVL rats using intravital microscopy and scanning electron microscopy (SEM). Extremely high red blood cell velocity (2,000-4,900 microm/s) was seen in these vessels. Injection of fluorescein sodium via the carotid artery revealed that the neovessels originated from the hepatic arterial vasculature. This was further confirmed by clamping the common hepatic artery and phenylephrine injection from the carotid artery. These vessels maintained sufficient flow after massive sinusoidal shutdown elicited by the portal infusion of endothelin receptor B agonist IRL-1620. SEM also showed extensive neovascularization at the hilum. Additionally, clamping the portal vein decreased sinusoidal perfusion only by 9.5% in PPVL, whereas a 71.2% decrease was observed in sham. These results strongly suggest that the liver maintains its microcirculatory flow by vascular remodeling from the hepatic arterial vasculature following PPVL.  相似文献   

20.
Cholestasis-induced liver injury during bile duct obstruction causes an acute inflammatory response. To further characterize the mechanisms underlying the neutrophil-induced cell damage in the bile duct ligation (BDL) model, we performed experiments using wild-type (WT) and ICAM-1-deficient mice. After BDL for 3 days, increased ICAM-1 expression was observed along sinusoids, along portal veins, and on hepatocytes in livers of WT animals. Neutrophils accumulated in sinusoids [358 +/- 44 neutrophils/20 high-power fields (HPF)] and >50% extravasated into the parenchymal tissue. Plasma alanine transaminase (ALT) levels increased by 23-fold, and severe liver cell necrosis (47 +/- 11% of total cells) was observed. Chlorotyrosine-protein adducts (a marker for neutrophil-derived hypochlorous acid) and 4-hydroxynonenal adducts (a lipid peroxidation product) were detected in these livers. Neutrophils also accumulated in the portal venules and extravasated into the portal tracts. However, no evidence for chlorotyrosine or 4-hydroxynonenal protein adducts was detected in portal tracts. ICAM-1-deficient mice showed 67% reduction in plasma ALT levels and 83% reduction in necrosis after BDL compared with WT animals. The total number of neutrophils in the liver was reduced (126 +/- 25/20 HPF), and 85% of these leukocytes remained in sinusoids. Moreover, these livers showed minimal staining for chlorotyrosine and 4-hydroxynonenal adducts, indicating a substantially reduced oxidant stress and a diminished cytokine response. Thus neutrophils relevant for the aggravation of acute cholestatic liver injury in BDL mice accumulate in hepatic sinusoids, extravasate into the tissue dependent on ICAM-1, and cause cell damage involving reactive oxygen formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号