首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in the cyclic AMP-dependent plasma membrane phosphorylation system of undifferentiated and differentiated L6 myogenic cells have been detected. Endogenous plasma membrane protein phosphorylation in undifferentiated L6 myoblasts was stimulated more than three fold by 5 x 10(-5) M cyclic AMP, whereas no statistically significant cyclic AMP-dependent phosphorylation of endogenous plasma membrane proteins was observed in differentiated L6 cells. In undifferentiated cells cyclic AMP promoted the phosphorylation of several proteins, the most prominent of which had a molecular weight of 110,000. In differentiated cells cyclic AMP did not selectively promote the phosphorylation of specific plasma membrane proteins. Both differentiated and undifferentiated L6 cells, however, contain a cyclic AMP-dependent protein kinase capable of catalyzing the phosphorylation of exogenous substrates, such as histone f2b. Therefore, the data show that differentiation in L6 cells is associated with a selective change in the activity of a plasma membrane cyclic AMP-dependent protein kinase which employs endogenous membrane proteins as substrate.  相似文献   

2.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743–745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system.We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10?5 M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase.Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems.The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane missing data  相似文献   

3.
Abstract: As cerebral neurons express the dopamine D1 receptor positively coupled with adenylyl cyclase, together with the D3 receptor, we have investigated in a heterologous cell expression system the relationships of cyclic AMP with D3 receptor signaling pathways. In NG108-15 cells transfected with the human D3 receptor cDNA, dopamine, quinpirole, and other dopamine receptor agonists inhibited cyclic AMP accumulation induced by forskolin. Quinpirole also increased mitogenesis, assessed by measuring [3H]thymidine incorporation. This effect was blocked partially by genistein, a tyrosine kinase inhibitor. Forskolin enhanced by 50–75% the quinpirole-induced [3H]thymidine incorporation. This effect was maximal with 100 n M forskolin, occurred after 6–16 h, was reproduced by cyclic AMP-permeable analogues, and was blocked by a protein kinase A inhibitor. Forskolin increased D3 receptor expression up to 135%, but only after 16 h and at concentrations of >1 µ M . Thus, in this cell line, the D3 receptor uses two distinct signaling pathways: it efficiently inhibits adenylyl cyclase and induces mitogenesis, an effect possibly involving tyrosine phosphorylation. Activation of the cyclic AMP cascade potentiates the D3 receptor-mediated mitogenic response, through phosphorylation by a cyclic AMP-dependent kinase of a yet unidentified component. Hence, transduction of the D3 receptor can involve both opposite and synergistic interactions with cyclic AMP.  相似文献   

4.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743-745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system. We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10(-5) M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase. Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems. The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane phosphorylation as a regulator of membrane functions including those that may control cellular differentiation.  相似文献   

5.
Abstract: Soluble and membrane fractions of bovine adrenal medulla contain several substrates for the Ca2+/ phospholipid-dependent and cyclic AMP-dependent protein kinases. The phosphorylation of soluble proteins (36 and 17.7 kilodaltons) and a membrane protein (22.5 kilo-daltons) showed an absolute requirement for the presence of both Ca2+ and phosphatidylserine; other substrates showed less stringent phosphorylation requirements and many of these proteins were specific for each of the protein kinases. The Ca2+/phospholipid-dependent phosphorylation was rapid, with effects seen as early as at 30 s of incubation. Measurement of enzyme activities with histone HI as an exogenous substrate demonstrated that the Ca2+/phospholipid-dependent protein kinase was equally distributed between the soluble and membrane fractions whereas the cyclic AMP-dependent enzyme was predominantly membrane-bound in adrenal medulla and chromaffin cells. The activity of the soluble Ca2+/phos-pholipid-dependent protein kinase of adrenal medulla was found to be about 50% of the enzyme level present in rat brain, a tissue previously shown to contain a very high enzyme activity. These results suggest a prominent role for the Ca2+/phospholipid-dependent protein kinase in chromaffin cell function.  相似文献   

6.
The plasma membrane of 3T3 cells contains at least two different endogenous cyclic AMP-dependent protein kinase systems. One catalyzes the phosphorylation of endogenous protein substrates, i.e., PP24 and PP14, whereas the other catalyzes the phosphorylation of exogenous substrates. In this paper the topography of these cyclic AMP-dependent phosphorylation systems is described. The results show that the kinases which phosphorylate only exogenous substrates are primarily localized to the outer plasma membrane surface whereas the endogenous cyclic AMP-dependent protein kinase and its two endogenous substrates are localized to the cytoplasmic plasma membrane surface. The data also establish that neither the cytoplasmically orientated kinase nor its substrates has a transmembrane orientation even though factors acting on the outer plasma membrane can affect these proteins. This suggests that functional modulation of the cytoplasmically localized cyclic AMP-dependent phosphorylation system can be mediated by a transmembrane regulatory mechanism. The importance of determining the topography of such plasma membrane phosphorylation systems is emphasized by recent studies which show that neoplastic transformation can be mediated at least in part by protein kinases and/or phosphoproteins which are localized on the cytoplasmic surface of the plasma membrane.  相似文献   

7.
Gastric mucosal membranes derived primarily from parietal cells were found to contain endogenous protein kinase systems as well as several phosphate-accepting substrates. One specific membrane protein with a molecular weight of 88 000 was phosphorylated only in the presence of calcium, while the degree of phosphorylation of three other membrane proteins was similarly increased. The activity of the calcium-dependent protein kinase was found to be totally inhibited in the presence of trifluoperazine, a phenothiazine known to specifically inactivate calmodulin. These results suggest that a calmodulin- and calcium-dependent phosphorylation system may be a component of the parietal cell membrane. Phosphorylation of the membrane proteins was not affected by either cyclic AMP or cyclic GMP. The heat-stable inhibitor protein of cyclic AMP-dependent protein kinase did not inhibit the endogenous protein kinase activity suggesting that the membrane enzyme is not similar to the cytosolic protein kinase. However, the catalytic subunit of the soluble enzyme was capable of phosphorylating a number of membrane proteins indicating that after maximal autophosphorylation of the gastric membranes, phosphate-acceptor sites are still available to the cytosolic cyclic AMP-dependent protein kinase.  相似文献   

8.
Abstract: In the medium-sized spiny neurons of the striatonigral pathway, a cascade of events involving the activation of dopamine D1 receptors, an increase in cyclic AMP, and activation of cyclic AMP-dependent protein kinase causes the phosphorylation of DARPP-32 on Thr34, converting DARPP-32 into a powerful inhibitor of protein phosphatase-1. In the present study, the incubation of striatal or substantia nigra slices with GABA also increased the phosphorylation of DARPP-32 on Thr34. GABA did not significantly increase cyclic AMP levels in slices. The phosphorylation of DARPP-32 by GABA was blocked in both brain regions by pretreatment of slices with the GABAA receptor antagonist, bicuculline, but not with the GABAB receptor antagonist, phaclofen. Moreover, the threonine phosphorylation of DARPP-32 produced by maximally effective doses of either forskolin (in striatum) or l -3,4-dihydroxyphenylalanine (in substantia nigra) was increased further by GABA. The data are consistent with a model in which GABA increases the phosphorylation state of DARPP-32 by inhibiting dephosphorylation of the protein by the calcium/calmodulin-dependent protein phosphatase, calcineurin.  相似文献   

9.
Abstract: Membranes of the secretory vesicles from bovine adrenal medulla were investigated for the presence of the endogenous protein phosphorylation activity. Seven phosphoprotein bands in the molecular weight range of 250,000 to 30,000 were observed by means of the sodium dodecyl sulphate electrophoresis and autoradiography. On the basis of the criteria of molecular weight, selective stimulation of the phosphorylation by cyclic AMP (as compared with cyclic GMP) and immunoprecipitation by specific antibodies, band 5 (molecular weight 60,300) was found to represent the phosphorylated form of the secretory vesicle-bound tyrosine hydroxylase. The electrophoretic mobility, the stimulatory and inhibitory effects of cyclic AMP in presence of Mg2+ and Zn,2+ respectively, and immunoreactivity toward antibodies showed band 6 to contain two forms of the regulatory subunits of the type II cyclic AMP-dependent protein kinase, distinguishable by their molecular weights (56,000 and 52,000, respectively). Phosphorylation of band 7 (molecular weight 29,800) was stimulated about 2 to 3 times by Ca2+ and calmodulin in the concentration range of both agents believed to occur in the secretory tissues under physiological conditions.  相似文献   

10.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

11.
Mouse neuroblastoma X embryonic Chinese hamster brain explant hybrid cell line (NCB-20) forms functional synapses when intracellular cyclic AMP levels are elevated for a prolonged period of time. NCB-20 cells were labeled with [32P]orthophosphate under conditions where 2-chloroadenosine gave maximum increases of 32P incorporation into tyrosine hydroxylase in nerve growth factor dibutyryl cyclic AMP-differentiated PC12 (pheochromocytoma) cells. When NCB-20 cells were exposed to activators [5-hydroxytryptamine (5-HT), prostaglandin E1, or forskolin], resulting in activation of cyclic AMP-dependent protein kinase, increased 32P incorporation into two major proteins [130 kilodaltons (kDa) and 90 kDa] occurred. 5-HT (in the presence of phosphodiesterase inhibitor, isobutylmethylxanthine) gave a three- to fourfold increase, and forskolin a four- to sevenfold increase in 32P incorporation into the 90-kDa protein. [D-Ala2,D-Leu5]-enkephalin, which decreased cyclic AMP levels and reversed the 2-chloroadenosine-stimulated phosphorylation of tyrosine hydroxylase in differentiated PC12 cells, also reversed the stimulation of phosphorylation of the 90-kDa protein in NCB-20 cells. Pretreatment of NCB-20 cells with a calcium ionophore, A23187, gave increased phosphorylation of the 90- and 130-kDa proteins, but phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (tumor promoting agent), cell depolarization with high K+, or pretreatment with dibutyryl cyclic GMP had no effect on phosphorylation of these proteins. In contrast, phosphorylation of an 80-kDa protein was decreased by forskolin, but increased following activation of the calcium/phospholipid-dependent kinase with tumor promoting agent. Neither the 90-kDa nor the 80-kDa protein showed any immunological cross-reactivity with synapsin, a major synaptic protein known to be phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase, but not calcium/phospholipid-dependent protein kinase. This suggests that in NCB-20 cells, several unique proteins can be phosphorylated by cyclic AMP-dependent protein kinase in response to hormonal elevation of cyclic AMP levels. In contrast, an 80-kDa protein is the primary substrate for calcium/phospholipid-dependent protein kinase, and its phosphorylation is inhibited by agents that elevate cyclic AMP levels and thereby activate cyclic AMP-dependent protein kinase.  相似文献   

12.
Abstract: Little is known about the coupling of serotonin 5-HT1B receptors to cellular signals other than cyclic AMP. In the present studies, the activation by 5-HT1B receptors of p70 S6 kinase and the mitogen-activated protein kinase (MAP kinase) ERK-2 was investigated. Studies were performed by using both nontransfected Chinese hamster ovary (CHO) cells, which express endogenous receptors at a very low density, and a stable transfected CHO cell line expressing 5-HT1B receptors at 230 fmol/mg of membrane protein, a density similar to that expressed in cortex. In nontransfected cells, 5-HT was found to stimulate a greater than twofold increase in MAP kinase activity with an EC50 of 20 n M . Reflecting increased density of receptors, 5-HT caused a greater than eightfold activation of ERK-2 in transfected cells with an EC50 of 2 n M . 5-HT was found to also stimulate p70 S6 kinase in both nontransfected and transfected cells. The stimulation was sixfold in both types of cells, but the EC50 for 5-HT was fourfold lower in transfected cells. The coupling of 5-HT1B receptors to ERK-2 and to p70 S6 kinase was inhibited by pertussis toxin, inhibitors of phosphatidylinositol 3-kinase, and by the inhibitor of MAP kinase kinase PD098059. Activation of p70 S6 kinase, but not ERK-2, was also inhibited by rapamycin. These findings demonstrate that 5-HT1B receptors couple to ERK-2 and p70 S6 kinase through overlapping, but nonidentical, pathways.  相似文献   

13.
Abstract: To clarify the regulatory mechanism of the N -methyl- d -aspartate (NMDA) receptor/channel by several protein kinases, we examined the effects of purified type II of protein kinase C (PKC-II), endogenous Ca2+/calmodulin-dependent protein kinase II (CaMK-II), and purified cyclic AMP-dependent protein kinase on NMDA receptor/ channel activity in the postsynaptic density (PSD) of rat brain. Purified PKC-II and endogenous CaMK-II catalyzed the phosphorylation of 80–200-kDa proteins in the PSD and l -glutamate-(or NMDA)-induced increase of (+)-5-[3H]methyl-10, 11-dihydro-5 H -dibenzo[a, d]cyclohepten-5, 10-imine maleate ([3H]MK-801; open channel blocker for NMDA receptor/channel) binding activity was significantly enhanced. However, the pretreatment of PKC-II-and CaMK-II-catalyzed phosphorylation did not change the binding activity of l -[3H]glutamate, cis -4-[3H](phospho-nomethyl)piperidine-2-carboxylate ([3H]CGS-19755; competitive NMDA receptor antagonist), [3H]glycine, α-[3H]-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, or [3H]-kainate in the PSD. Pretreatment with PKC-II-and CaMK-II-catalyzed phosphorylation enhanced l -glutamate-induced increase of [3H]MK-801 binding additionally, although purified cyclic AMP-dependent protein kinase did not change l -glutamate-induced [3H]MK-801 binding. From these results, it is suggested that PKC-II and/or CaMK-II appears to induce the phosphorylation of the channel domain of the NMDA receptor/channel in the PSD and then cause an enhancement of Ca2+ influx through the channel.  相似文献   

14.
We have examined endogenous cyclic AMP-stimulated phosphorylation of subcellular fractions of rat brain enriched in synaptic plasma membranes (SPM), purified synaptic junctions (SJ), and postsynaptic densities (PSD). The analyses of these fractions are essential to provide direct evidence for cyclic AMP-dependent endogenous phosphorylation at discrete synaptic junctional loci. Protein kinase activity was measured in subcellular fractions using both endogenous and exogenous (histones) proteins as substrates. The SJ fraction possessed the highest kinase activity toward endogenous protein substrates, 5-fold greater than SPM and approximately 120-fold greater than PSD fractions. Although the kinase activity as measured with histones as substrates was only slightly higher in SJ than SPM fractions, there was a marked preference of kinase activity toward endogenous compared to exogenous substrates in SJ fractions but in SPM fractions. Although overall phosphorylation in SJ fractions was increased only 36% by 5 micron cyclic AMP, there were discrete proteins of Mr = 85,000, 82,000, 78,000, and 55,000 which incorporated 2- to 3-fold more radioactive phosphate in the presence of cyclic AMP. Most, if not all, of the cyclic AMP-independent kinase activity is probably catalyzed by catalytic subunit derived from cyclic AMP-dependent kinase, since the phosphorylation of both exogenous and endogenous proteins was greatly decreased in the presence of a heat-stable inhibitor protein prepared from the soluble fraction of rat brain. The specific retention of SJ protein kinase(s) activity during purification and their resistance to detergent solubilization was achieved by chemical treatments which produce interprotein cross-linking via disulfide bridges. Two SJ polypeptides of Mr = 55,000 and 49,000 were photoaffinity-labeled with [32P]8-N3-cyclic AMP and probably represent the regulatory subunits of the type I and II cyclic AMP-dependent protein kinases. The protein of Mr = 55,000 was phosphorylated in a cyclic AMP-stimulated manner suggesting autophosphorylation as previously observed in other systems.  相似文献   

15.
High-resolution two-dimensional gel electrophoresis of proteins labeled with either 32Pi or [35S]methionine was used to study interactions between cyclic AMP and tetradecanoyl phorbol acetate (TPA) at the level of intracellular protein phosphorylation. Cultured S49 mouse lymphoma cells were used as a model system, and mutant sublines lacking either the catalytic subunit of cyclic AMP-dependent protein kinase or the guanyl nucleotide-binding "Ns" factor of adenylate cyclase provided tools to probe mechanisms underlying the interactions observed. Three sets of phosphoproteins responded differently to TPA treatment of wild-type and mutant cells: Phosphorylations shown previously to be responsive to activation of intracellular cyclic AMP-dependent protein kinase were stimulated by TPA in wild-type cells but not in mutant cells, a subset of phosphorylations stimulated strongly by TPA in mutant cells was inhibited in wild-type cells, and two novel phosphoprotein species appeared in response to TPA only in wild-type cells. The latter two classes of TPA-mediated responses specific to wild-type cells could be evoked in adenylate cyclase-deficient cells by treating concomitantly with TPA and either forskolin or an analog of cyclic AMP. Three conclusions are drawn from our results: 1) TPA stimulates adenylate cyclase in wild-type cells causing increased phosphorylation of endogenous substrates by cyclic AMP-dependent protein kinase, 2) activated cyclic AMP-dependent protein kinase inhibits phosphorylation (or enhances dephosphorylation) of a specific subset of TPA-dependent phosphoproteins, and 3) cyclic AMP-dependent events facilitate TPA-dependent phosphorylation of some substrate proteins.  相似文献   

16.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

17.
Abstract: We have identified previously a synaptic membrane-associated protein, PP59, that serves as a substrate for cyclic AMP-dependent protein kinase and is enriched in rat cerebellum. We show here that PP59 can be extracted from synaptic plasma membranes with a combination of 2% Triton X-100 plus 1 M KCl. A 290-fold purification of PP59 was achieved by selective solubilization, followed by continuous-elution preparative gel electrophoresis. To determine the amino acid sequence surrounding the cyclic AMP-dependent protein kinase phosphorylation site within PP59, the partially purified 32P-phosphorylated protein was digested with chymotrypsin, and radiolabeled peptides were purified by sequential reversed-phase HPLC in two different solvent systems. Automated Edman degradation revealed a single phosphorylation site contained within the sequence Ala-Arg-Glu-Arg-Ser-Asp-Ser(P)-Thr-Gly-Ser-Ser-Ser-Val-Tyr. No strong sequence homology to this peptide fragment with other known peptides or proteins in the SwissProt, PIR, or GenPept databases could be found. A synthetic peptide containing this unique 14-amino acid sequence was used to develop polyclonal anti-peptide antibodies that were affinity-purified and shown to recognize intact PP59 as determined by western blotting. These antibodies specifically inhibited the phosphorylation of PP59 by cyclic AMP-dependent protein kinase in an in vitro phosphorylation assay containing synaptic plasma membranes.  相似文献   

18.
Abstract: In anterior pituitary cells or when transfected into host cell lines, the D2 dopamine receptor inhibits adenylyl cyclase and activates potassium channels. The GH-3 pituitary tumor cell line, which lacks functional D2 receptors, responds to epidermal growth factor (EGF) by expressing a D2 receptor that, paradoxically, couples to potassium channel activation but poorly inhibits adenylyl cyclase; this was correlated with a pronounced increase in α subunit of the G protein G13. In this study we have investigated the effects of EGF on the transduction mechanisms of D2 receptors in GH4C1 cells transfected and permanently overexpressing the rat short D2 receptor. Activation of D2 receptors in these cells resulted in both inhibition of adenylyl cyclase and opening of potassium channels and inhibition of prolactin release by both cyclic AMP-dependent and independent mechanisms. Exposure of the transfected GH4C1 cells to EGF caused a dramatic decrease in the coupling efficiency of the D2 receptor to inhibit cyclic AMP-dependent responses, leaving its activity toward potassium channels unchanged. The EGF treatment led to the concomitant increase in the membrane content of G13 protein. These results suggest that the transmembrane signaling specificity of G protein-coupled receptors can be modulated by the relative amounts of different G proteins at the cell membrane.  相似文献   

19.
20.
Abstract: The γ2 subunit of the GABAA receptor (GABAA-R) is alternatively spliced. The long variant (γ2L) contains eight additional amino acids that possess a consensus sequence site for protein phosphorylation. Previous studies have demonstrated that a peptide or fusion protein containing these eight amino acids is a substrate for protein kinase C (PKC), but not cyclic AMP-dependent protein kinase A (PKA)-stimulated phosphorylation. We have examined the ability of PKA, PKC, and Ca2+/calmodulin-dependent protein kinase (CAM kinase II) to phosphorylate a synthetic peptide corresponding to residues 336–351 of the intracellular loop of the γ2L subunit and inclusive of the alternatively spliced phosphorylation consensus sequence site. PKC and CAM kinase II produced significant phosphorylation of this peptide, but PKA was ineffective. The K m values for PKC-and CAM kinase II-stimulated phosphorylation of this peptide were 102 and 35 μM , respectively. Maximal velocities of 678 and 278 nmol of phosphate/min/mg were achieved by PKC and CAM kinase II, respectively. The phosphorylation site in the eight-amino-acid insert of the γ2L subunit has been shown to be necessary for ethanol potentiation of the GABAA-R. Thus, our results suggest that PKC, CAM kinase II, or both may play a role in the effects of ethanol on GABAergic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号