首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rough lemon pathotype of Alternaria alternata produces host-selective ACR-toxin and causes Alternaria leaf spot disease of rough lemon (Citrus jambhiri). The structure of ACR-toxin I (MW = 496) consists of a polyketide with an α-dihydropyrone ring in a 19-carbon polyalcohol. Genes responsible for toxin production were localized to a 1.5-Mb chromosome in the genome of the rough lemon pathotype. Sequence analysis of this chromosome revealed an 8,338-bp open reading frame, ACRTS2, that was present only in the genomes of ACR-toxin-producing isolates. ACRTS2 is predicted to encode a putative polyketide synthase of 2,513 amino acids and belongs to the fungal reducing type I polyketide synthases. Typical polyketide functional domains were identified in the predicted amino acid sequence, including β-ketoacyl synthase, acyl transferase, methyl transferase, dehydratase, β-ketoreductase, and phosphopantetheine attachment site domains. Combined use of homologous recombination-mediated gene disruption and RNA silencing allowed examination of the functional role of multiple paralogs in ACR-toxin production. ACRTS2 was found to be essential for ACR-toxin production and pathogenicity of the rough lemon pathotype of A. alternata.  相似文献   

2.
Host-selective toxins (HSTs) produced by some strains of Alternaria alternata are selectively toxic to certain cultivars of plants. However, the role of HSTs in toxin-insensitive plants is currently unknown. Here, we studied the role of ACT-toxin using an ACT-toxin producing A. alternata strain SH20 and the ACT-toxin-insensitive plant rough lemon. Induction of some defense related genes in response to SH20 were faster or stronger than in response to the ACT-toxin deficient SH20 mutant. By sequencing subtractive PCR clones obtained from mRNA of rough lemon leaves inoculated with SH20 after subtraction with that of the ACT-toxin deficient SH20 mutant, we isolated the SH20-responsive genes in rough lemon. Among the SH20-responsive genes analyzed in this study, we isolated a terpene synthase (TPS) gene, RlemTPS3. We also determined that RlemTPS3 localizes to the chloroplast and produces the monoterpene geraniol.  相似文献   

3.
The filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce host-specific toxins and cause diseases on different plants. Previously, the gene cluster involved in host-specific AK-toxin biosynthesis of the Japanese pear pathotype was isolated, and four genes, named AKT genes, were identified. The AKT homologs were also found in the strawberry and tangerine pathotypes, which produce AF-toxin and ACT-toxin, respectively. This result is consistent with the fact that the toxins of these pathotypes share a common 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid structural moiety. In this study, three of the AKT homologs (AFT1-1, AFTR-1, and AFT3-1) were isolated on a single cosmid clone from strain NAF8 of the strawberry pathotype. In NAF8, all of the AKT homologs were present in multiple copies on a 1.05-Mb chromosome. Transformation-mediated targeting of AFT1-1 and AFT3-1 in NAF8 produced AF-toxin-minus, nonpathogenic mutants. All of the mutants lacked the 1.05-Mb chromosome encoding the AFT genes. This chromosome was not essential for saprophytic growth of this pathogen. Thus, we propose that a conditionally dispensable chromosome controls host-specific pathogenicity of this pathogen.  相似文献   

4.
Alternaria citri, the cause of Alternaria black rot, and Alternaria alternata rough lemon pathotype, the cause of Alternaria brown spot, are morphologically indistinguishable pathogens of citrus: one causes rot by macerating tissues and the other causes necrotic spots by producing a host-selective toxin. To evaluate the role of endopolygalacturonase (endoPG) in pathogenicity of these two Alternaria spp. pathogens, their genes for endoPG were mutated by gene targeting. The endoPGs produced by these fungi have similar biochemical properties, and the genes are highly similar (99.6% nucleotide identity). The phenotypes of the mutants, however, are completely different. An endoPG mutant of A. citri was significantly reduced in its ability to cause black rot symptoms on citrus as well as in the maceration of potato tissue and could not colonize citrus peel segments. In contrast, an endoPG mutant of A. alternata was unchanged in pathogenicity. The results indicate that a cell wall-degrading enzyme can play different roles in the pathogenicity of fungal pathogens. The role of a cell wall-degrading enzyme depends upon the type of disease but not the taxonomy of the fungus.  相似文献   

5.
6.
7.
The Japanese pear pathotype of Alternaria alternata causes black spot of Japanese pear by producing a host-specific toxin known as AK-toxin. Restriction enzyme-mediated integration (REMI) mutagenesis was used to tag genes required for toxin biosynthesis. Protoplasts of a wild-type strain were treated with a linearized plasmid along with the restriction enzyme used to linearize the plasmid. Of 984 REMI transformants recovered, three produced no detectable AK-toxin and lost pathogenicity on pear leaves. Genomic DNA flanking the integrated plasmid was recovered from one of the mutants. With the recovered DNA used as a probe, a cosmid clone of the wild-type strain was isolated. Structural and functional analyses of an 8.0-kb region corresponding to the tagged site indicated the presence of two genes. One, designated AKT1, encodes a member of the class of carboxyl-activating enzymes. The other, AKT2, encodes a protein of unknown function. The essential roles of these two genes in both AK-toxin production and pathogenicity were confirmed by transformation-mediated gene disruption experiments. DNA gel blot analysis detected AKT1 and AKT2 homologues not only in the Japanese pear pathotype strains but also in strains from the tangerine and strawberry pathotypes. The host-specific toxins of these two pathotypes are similar in structure to AK-toxin. Homologues were not detected in other pathotypes or in non-pathogenic strains of A. alternata, suggesting acquisition of AKT1 and AKT2 by horizontal transfer.  相似文献   

8.
Programmed cell death (PCD), known as hypersensitive response cell death, has an important role in plant defense response. The signaling pathway of PCD remains unknown. We employed AAL toxin and Nicotiana umbratica to analysis plant PCD. AAL toxin is a pathogenicity factor of the necrotrophic pathogen Alternaria alternata f. sp. lycopersici. N. umbratica is sensitive to AAL toxin, susceptible to pathogens, and effective in Tobacco rattle virus-based virus-induced gene silencing (VIGS). VIGS analyses indicated that AAL toxin-triggered cell death (ACD) is dependent upon the mitogen-activated protein (MAP) kinase kinase MEK2, which is upstream of both salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) responsible for ethylene (ET) synthesis. ET treatment of MEK2-silenced N. umbratica re-established ACD. In SIPK- and WIPK-silenced N. umbratica, ACD was compromised and ET accumulation was not observed. However, in contrast to the case of MEK2-silenced plants, ET treatment did not induce cell death in SIPK- and WIPK-silenced plants. This work showed that ET-dependent pathway and MAP kinase cascades are required in ACD. Our results suggested that MEK2-SIPK/WIPK cascades have roles in ET biosynthesis; however, SIPK and WIPK have other roles in ET signaling or another pathway leading to cell death by AAL toxin.  相似文献   

9.
10.
Fungi respond and adapt to different environmental stimuli via signal transduction systems. We determined the function of a yeast SLT2 mitogen-activated protein (MAP) kinase homologue (AaSLT2) in Alternaria alternata, the fungal pathogen of citrus. Analysis of the loss-of-function mutant indicated that AaSLT2 is required for the production of a host-selective toxin, and is crucial for fungal pathogenicity. Moreover, the A. alternata slt2 mutants displayed hypersensitivity to cell wall-degrading enzymes and chemicals such as Calcofluor white and Congo red. This implicates an important role of AaSLT2 in the maintenance of cell wall integrity in A. alternata. The A. alternata slt2 mutants were also hypersensitive to a heteroaromatic compound, 2-chloro-5-hydroxypyridine, and a plant growth regulator, 2,3,5-triiodobenzoic acid. Developmentally, the AaSLT2 gene product was shown to be critical for conidial formation and hyphal elongation. Compared with the wild-type, the mutants produced fewer but slightly larger conidia with less transverse septae. The mutants also accumulated lower levels of melanin and chitin. Unlike the wild-type progenitor, the A. alternata slt2 mutants produced globose, swollen hyphae that did not elongate in a straight radial direction. All defective phenotypes in the mutant were restored by transformation and expression of a wild-type copy of AaSLT2 under the control of its endogenous promoter. This study highlights an important role of the AaSLT2 MAP kinase-mediated signalling pathway, regulating diverse physiological, developmental and pathological functions, in the tangerine pathotype of A. alternata.  相似文献   

11.
A high-throughput RNA-mediated gene silencing system was developed for Cochliobolus sativus (anamorph: Bipolaris sorokiniana), the causal agent of spot blotch, common root rot and black point in barley and wheat. The green fluorescent protein gene (GFP) and the proteinaceous host-selective toxin gene (ToxA) were first introduced into C. sativus via the polyethylene glycol (PEG)-mediated transformation method. Transformants with a high level of expression of GFP or ToxA were generated. A silencing vector (pSGate1) based on the Gateway cloning system was developed and used to construct RNA interference (RNAi) vectors. Silencing of GFP and ToxA in the transformants was demonstrated by transformation with the RNAi construct expressing hairpin RNA (hpRNA) of the target gene. The polyketide synthase gene (CsPKS1), involved in melanin biosynthesis pathways in C. sativus, was also targeted by transformation with the RNAi vector (pSGate1-CsPKS1) encoding hpRNA of the CsPKS1 gene. The transformants with pSGate1-CsPKS1 exhibited an albino phenotype or reduced melanization, suggesting effective silencing of the endogenous CsPKS1 in C. sativus. Sectors exhibiting the wild-type phenotype of the fungus appeared in some of the CsPKS1-silenced transformants after subcultures as a result of inactivation or deletions of the RNAi transgene. The gene silencing system established provides a useful tool for functional genomics studies in C. sativus and other filamentous fungi.  相似文献   

12.
The nectrotrophic fungus Alternaria alternata f.sp. lycopersici infects tomato plants of the genotype asc/asc by utilizing a host-selective toxin, AAL-toxin, that kills the host cells by inducing programmed cell death. Asc-1 is homologous to genes found in most eukaryotes from yeast to humans, suggesting a conserved function. A yeast strain with deletions in the homologous genes LAG1 and LAC1 was functionally complemented by Asc-1, indicating that Asc-1 functions in an analogous manner to the yeast homologues. Examination of the yeast sphingolipids, which are almost absent in the lag1Deltalac1Delta mutant, showed that Asc-1 was able to restore the synthesis of sphingolipids. We therefore examined the biosynthesis of sphingolipids in tomato by labeling leaf discs with l-[3-3H]serine. In the absence of AAL-toxin, there was no detectable difference in sphingolipid labeling between leaf discs from Asc/Asc or asc/asc leaves. In the presence of pathologically significant concentrations of AAL-toxin however, asc/asc leaf discs showed severely reduced labeling of sphingolipids and increased label in dihydrosphingosine (DHS) and 3-ketodihydrosphingosine (3-KDHS). Leaf discs from Asc/Asc leaves responded to AAL-toxin treatment by incorporating label into different sphingolipid species. The effects of AAL-toxin on asc/asc leaflets could be partially blocked by the simultaneous application of AAL-toxin and myriocin. Leaf discs simultaneously treated with AAL-toxin and myriocin showed no incorporation of label into sphingolipids or long-chain bases as expected. These results indicate that the presence of Asc-1 is able to relieve an AAL-toxin-induced block on sphingolipid synthesis that would otherwise lead to programmed cell death.  相似文献   

13.
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.  相似文献   

14.
The apple pathotype of Alternaria alternata produces host-specific AM-toxin and causes Alternaria blotch of apple. Previously, we cloned two genes, AMT1 and AMT2, required for AM-toxin biosynthesis and found that these genes are encoded by small, supernumerary chromosomes of <1.8 Mb in the apple pathotype strains. Here, we performed expressed sequence tag analysis of the 1.4-Mb chromosome encoding AMT genes in strain IFO8984. A cDNA library was constructed using RNA from AM-toxin-producing cultures. A total of 40,980 clones were screened with the 1.4-Mb chromosome probe, and 196 clones encoded by the chromosome were isolated. Sequence analyses of these clones identified 80 unigenes, including AMT1 and AMT2, and revealed that the functions of 43 (54%) genes are unknown. The expression levels of the 80 genes in AM-toxin-producing and nonproducing cultures were analyzed by real-time quantitative polymerase chain reaction (PCR). Most of the genes were found to be expressed in both cultures at markedly lower levels than the translation elongation factor 1-alpha gene used as an internal control. Comparison of the expression levels of these genes between two cultures showed that 21 genes, including AMT1 and AMT2, were upregulated (>10-fold) in AM-toxin-producing cultures. Two of the upregulated genes were newly identified to be involved in AM-toxin biosynthesis by the gene disruption experiments and were named AMT3 and AMT4. Thus, the genes upregulated in AM-toxin-producing cultures contain ideal candidates for novel AM-toxin biosynthetic genes.  相似文献   

15.
16.
The filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce different host-specific toxins and cause diseases on different plants. The strawberry pathotype produces host-specific AF-toxin and causes Alternaria black spot of strawberry. This pathotype is also pathogenic to Japanese pear cultivars susceptible to the Japanese pear pathotype that produces AK-toxin. The strawberry pathotype produces two related molecular species, AF-toxins I and II: toxin I is toxic to both strawberry and pear, and toxin II is toxic only to pear. Previously, we isolated a cosmid clone pcAFT-1 from the strawberry pathotype that contains three genes involved in AF-toxin biosynthesis. Here, we have identified a new gene, designated AFTS1, from pcAFT-1. AFTS1 encodes a protein with similarity to enzymes of the aldo-ketoreductase superfamily. Targeted mutation of AFTS1 diminished the host range of the strawberry pathotype: Delta aftS1 mutants were pathogenic to pear, but not to strawberry, as is the Japanese pear pathotype. These mutants were found to produce AF-toxin II, but not AF-toxin I. These data represent a novel example of how the host range of a plant pathogenic fungus can be restricted by modification of secondary metabolism.  相似文献   

17.
The host-selective AAL toxins secreted by Alternaria alternata f sp lycopersici are primary chemical determinants in the Alternaria stem canker disease of tomato. The AAL toxins are members of a new class of sphinganine analog mycotoxins that cause cell death in both animals and plants. Here, we report detection of stereotypic hallmarks of apoptosis during cell death induced by these toxins in tomato. DNA ladders were observed during cell death in toxin-treated tomato protoplasts and leaflets. The intensity of the DNA ladders was enhanced by Ca2+ and inhibited by Zn2+. The progressive delineation of fragmented DNA into distinct bodies, coincident with the appearance of DNA ladders, also was observed during death of toxin-treated tomato protoplasts. In situ analysis of cells dying during development in both onion root caps and tomato leaf tracheary elements revealed DNA fragmentation localized to the dying cells as well as the additional formation of apoptotic-like bodies in sloughing root cap cells. We conclude that the fundamental elements of apoptosis, as characterized in animals, are conserved in plants. The apoptotic process may be expressed during some developmental transitions and is the functional process by which symptomatic lesions are formed in the Alternaria stem canker disease of tomato. Sphinganine analog mycotoxins may be used to characterize further signaling pathways leading to apoptosis in plants.  相似文献   

18.
Foreign DNA can be readily integrated into the genomes of mammalian embryonic cells by retroviral infection, DNA microinjection, and transfection protocols. However, the transgenic DNA is frequently not expressed or is expressed at levels far below expectation. In a number of organisms such as yeast, plants, Drosophila, and nematodes, silencing of transfected genes is triggered by the interaction between adjacent or dispersed copies of genes of identical sequence. We set out to determine whether a mechanism similar to repeat-induced gene silencing (RIGS) is responsible for the silencing of transgenes in murine embryonal carcinoma stem cells. We compared the expression of identical reporter gene constructs in cells carrying single or multiple copies and found that the level of expression per integrated copy was more than 10-fold higher in single-copy integrants. In cells carrying tandem copies of the transgene, many copies were methylated and clones frequently failed to express both copies of near-identical integrated alleles. Addition of extra copies of the reporter gene coding sequence reduced the level of expression from the same reporter driven by a eukaryotic promoter. We also found that inhibitors of histone deacetylase such as trichostatin A forestall the silencing of multicopy transgenes, suggesting that chromatin mediates the silencing of transfected genes. This evidence is consistent with the idea that RIGS does occur in mammalian embryonic stem cells although silencing of single-copy transgenes also occurs, suggesting that RIGS is only one of the mechanisms responsible for triggering transgene silencing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号