首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to the Kluyveromyces lactis zymocin, the gamma-toxin target (TOT) function of the Saccharomyces cerevisiae RNA polymerase II (pol II) Elongator complex prevents sensitive strains from cell cycle progression. Studying Elongator subunit communications, Tot1p (Elp1p), the yeast homologue of human IKK-associated protein, was found to be essentially involved in maintaining the structural integrity of Elongator. Thus, the ability of Tot2p (Elp2p) to interact with the HAT subunit Tot3p (Elp3p) of Elongator and with subunit Tot5p (Elp5p) is dependent on Tot1p (Elp1p). Also, the association of core-Elongator (Tot1-3p/Elp1-3p) with HAP (Elp4-6p/Tot5-7p), the second three-subunit subcomplex of Elongator, was found to be sensitive to loss of TOT1 (ELP1) gene function. Structural integrity of the HAP complex itself requires the ELP4/TOT7, ELP5/TOT5, and ELP6/TOT6 genes, and elp6Delta/tot6Delta as well as elp4Delta/tot7Delta cells can no longer promote interaction between Tot5p (Elp5p) and Tot2p (Elp2p). The association between Elongator and Tot4p (Kti12p), a factor that may modulate the TOT activity of Elongator, requires Tot1-3p (Elp1-3p) and Tot5p (Elp5p), indicating that this contact requires a preassembled holo-Elongator complex. Tot4p also binds pol II hyperphosphorylated at its C-terminal domain Ser(5) raising the possibility that Tot4p bridges the contact between Elongator and pol II.  相似文献   

2.
mTn3-tagging identified Kluyveromyces lactis zymocin target genes from Saccharomyces cerevisiae as TOT1-3/ELP1-3 coding for the RNA polymerase II (pol II) Elongator histone acetyltransferase (HAT) complex. tot phenotypes resulting from mTn3 tagging were similar to totDelta null alleles, suggesting loss of Elongator's integrity. Consistently, the Tot1-3/Elp1-3 proteins expressed from the mTn3-tagged genes were all predicted to be C-terminally truncated, lacking approximately 80% of Tot1p, five WD40 Tot2p repeats and two HAT motifs of Tot3p. Besides its role as a HAT, Tot3p assists subunit communication within Elongator by mediating Tot2-Tot4, Tot2-Tot5, Tot2-Tot1 and Tot4-Tot5 protein-protein interactions. TOT1 and TOT2 are essential for Tot4-Tot2 and Tot4-Tot3 interactions respectively. The latter was lost with a C-terminal Tot2p truncation; the former was affected by progressively truncating TOT1. Despite being dispensable for Tot4-Tot2 interaction, the extreme C-terminus of Tot1p may play a role in TOT/Elongator function, as its truncation confers zymocin resistance. Tot4p/Kti12p, an Elongator-associated factor, also interacted with pol II and could be immunoprecipitated while being bound to the ADH1 promoter. Two-hybrid analysis showed that Tot4p also interacts with Cdc19p, suggesting that Tot4p plays an additional role in concert with Cdc19p, perhaps co-ordinating cell growth with carbon source metabolism.  相似文献   

3.
The Elp3 subunit of the Elongator complex is highly conserved from archaea to humans and contains a well-characterized C-terminal histone acetyltransferase (HAT) domain. The central region of Elp3 shares significant sequence homology to the Radical SAM superfamily. Members of this large family of bacterial proteins contain a FeS cluster and use S-adenosylmethionine (SAM) to catalyse a variety of radical reactions. To biochemically characterize this domain we have expressed and purified the corresponding fragment of the Methanocaldococcus jannaschii Elp3 protein. The presence of a Fe4S4 cluster has been confirmed by UV-visible spectroscopy and electron paramagnetic resonance (EPR) spectroscopy and the Fe content determined by both a colorimetric assay and atomic absorption spectroscopy. The cysteine residues involved in cluster formation have been identified by site-directed mutagenesis. The protein binds SAM and the binding alters the EPR spectrum of the FeS cluster. Our results provide biochemical support to the hypothesis that Elp3 does indeed contain the Fe4S4 cluster which characterizes the Radical SAM superfamily and binds SAM, suggesting that Elp3, in addition to its HAT activity, has a second as yet uncharacterized catalytic function. We also present preliminary data to show that the protein cleaves SAM.  相似文献   

4.
5.
从HeLa细胞中分离的人的Elongator复合物在组成及与RNAPⅡ的作用方式上与酵母的Elongator复合物十分相似.但对其功能研究极少。为了研究人的Elongator复合物催化亚基Elp3的功能,将人elp3等基因转入酵母elp3基因缺失的突变菌株(elp3△菌株),并对转化菌株进行功能互补实验和ssa和pho5基因表达分析,结果表明人elp3基因可显著恢复突变菌株对高温和Caffeine的敏感性.在低磷条件下显著补偿了突变株ph05基因表达延迟的缺陷.并可在热激条件下提高ssa3基因的表达。含酵母elp3非HAT区和人elp3 HAT区的融合yhelp3对上述缺陷有着更强的补偿能力。而HAT区催化结构域缺失的yhelp3HAT-没有任何补偿能力.表明人Elp3亚基可能与酵母的该亚基功能相似.人Elp3的HAT活性也为其行使功能所必需。  相似文献   

6.
In yeast, the role for the Elongator complex in tRNA anticodon modification is affected by phosphorylation of Elongator subunit Elp1. Thus, hyperphosphorylation of Elp1 due to inactivation of protein phosphatase Sit4 correlates with Elongator-minus phenotypes including resistance towards zymocin, a tRNase cleaving anticodons of Elongator-dependent tRNAs. Here we show that zymocin resistance of casein kinase hrr25 mutants associates with hypophosphorylation of Elp1 and that nonsense suppression by the Elongator-dependent SUP4 tRNA is abolished in hrr25 or sit4 mutants. Thus changes that perturb the evenly balanced ratio between hyper- and hypophosphorylated Elp1 forms present in wild-type cells lead to Elongator inactivation. Antagonistic roles for Hrr25 and Sit4 in Elongator function are further supported by our data that Sit4 inactivation is capable of restoring both zymocin sensitivity and normal ratios between the two Elp1 forms in hrr25 mutants. Hrr25 binds to Elongator in a fashion dependent on Elongator partner Kti12. Like sit4 mutants, overexpression of Kti12 triggers Elp1 hyperphosphorylation. Intriguingly, this effect of Kti12 is blocked by hrr25 mutations, which also show enhanced binding of Kti12 to Elongator. Collectively, our data suggest that rather than directly targeting Elp1, the Hrr25 kinase indirectly affects Elp1 phosphorylation states through control of Sit4-dependent dephosphorylation of Elp1.  相似文献   

7.
The toxin target (TOT) function of the Saccharomyces cerevisiae Elongator complex enables Kluyveromyces lactis zymocin to induce a G1 cell cycle arrest. Loss of a ubiquitin-related system (URM1-UBA4 ) and KTI11 enhances post-translational modification/proteolysis of Elongator subunit Tot1p (Elp1p) and abrogates its TOT function. Using TAP tagging, Kti11p contacts Elongator and translational proteins (Rps7Ap, Rps19Ap Eft2p, Yil103wp, Dph2p). Loss of YIL103w and DPH2 (involved in diphtheria toxicity) suppresses zymocicity implying that both toxins overlap in a manner mediated by Kti11p. Among the pool that co-fractionates with RNA polymerase II (pol II) and nucleolin, Nop1p, unmodified Tot1p dominates. Thus, modification/proteolysis may affect association of Elongator with pol II or its localization. Consistently, an Elongator-nuclear localization sequence (NLS) targets green fluorescent protein (GFP) to the nucleus, and its truncation yields TOT deficiency. Similarly, KAP120 deletion rescues cells from zymocin, suggesting that Elongator's TOT function requires NLS- and karyopherin-dependent nuclear import.  相似文献   

8.
由6个亚基组成的Elongator复合物是RNA聚合酶Ⅱ(RNA polymeraseⅡ.RNAPⅡ)全酶的一个重要组成部分,它可以与高度磷酸化的RNAPⅡ相结合,其Elp3亚基具有组蛋白乙酰转移酶(histone acetyltransferase,HAT)活性,在以染色质为模板的转录延伸中发挥重要作用。Elongator是目前发现的第一个参与转录延伸的HAT复合物。  相似文献   

9.
10.
Elongator is a histone acetyltransferase complex that associates with the elongating form of RNA polymerase II. We purified Elongator to virtual homogeneity via a rapid three-step procedure based largely on affinity chromatography. The purified factor, holo-Elongator, is a labile six-subunit factor composed of two discrete subcomplexes: one comprised of the previously identified Elp1, Elp2, and Elp3 proteins and another comprised of three novel polypeptides, termed Elp4, Elp5, and Elp6. Disruption of the yeast genes encoding the new Elongator proteins confers phenotypes indistinguishable from those previously described for the other elp mutants, and concomitant disruption of genes encoding proteins in either subcomplex does not confer new phenotypes. Taken together, our results indicate that holo-Elongator is a functional entity in vitro as well as in vivo. Metazoan homologues of Elp1 and Elp3 have previously been reported. We cloned the human homologue of yeast ELP4 and show that this gene is ubiquitously expressed in human tissues.  相似文献   

11.
12.
The Elongator complex associated with elongating RNA polymerase II in Saccharomyces cerevisiae was originally reported to have three subunits, Elp1, Elp2, and Elp3. Using the tandem affinity purification (TAP) procedure, we have purified a six-subunit yeast Holo-Elongator complex containing three additional polypeptides, which we have named Elp4, Elp5, and Elp6. TAP tapping and subsequent purification of any one of the six subunits result in the isolation of all six components. Purification of Elongator in higher salt concentrations served to demonstrate that the complex could be separated into two subcomplexes: one consisted of Elp1, -2, and -3, and the other consisted of Elp4, -5, and -6. Deletions of the individual genes encoding the new Elongator subunits showed that only the ELP5 gene is essential for growth. Disruption of the two nonessential new Elongator-encoding genes, ELP4 and ELP6, caused the same phenotypes observed with knockouts of the original Elongator-encoding genes. Results of microarray analyses demonstrated that the gene expression profiles of strains containing deletions of genes encoding subunits of either Elongator subcomplex, in which we detected significantly altered mRNA expression levels for 96 genes, are very similar, implying that all the Elongator subunits likely function together to regulate a group of S. cerevisiae genes in vivo.  相似文献   

13.
14.
15.
16.
17.
Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator''s largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator''s tRNA modification function. Hrr25 protein kinase directly modifies Elp1 on two sites (Ser-1198 and Ser-1202) and through analyzing non-phosphorylatable (alanine) and acidic, phosphomimic substitutions at Ser-1198, Ser-1202 and Ser-1209, we provide evidence that phosphorylation plays a positive role in the tRNA modification function of Elongator and may regulate the interaction of Elongator both with its accessory protein Kti12 and with Hrr25 kinase.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号