首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulator sequences guide the function of distantly located enhancer elements to the appropriate target genes by blocking inappropriate interactions. In Drosophila, five different insulator binding proteins have been identified, Zw5, BEAF-32, GAGA factor, Su(Hw) and dCTCF. Only dCTCF has a known conserved counterpart in vertebrates. Here we find that the structurally related factors dCTCF and Su(Hw) have distinct binding targets. In contrast, the Su(Hw) interacting factor CP190 largely overlapped with dCTCF binding sites and interacts with dCTCF. Binding of dCTCF to targets requires CP190 in many cases, whereas others are independent of CP190. Analysis of the bithorax complex revealed that six of the borders between the parasegment specific regulatory domains are bound by dCTCF and by CP190 in vivo. dCTCF null mutations affect expression of Abdominal-B, cause pharate lethality and a homeotic phenotype. A short pulse of dCTCF expression during larval development rescues the dCTCF loss of function phenotype. Overall, we demonstrate the importance of dCTCF in fly development and in the regulation of abdominal segmentation.  相似文献   

2.
3.
4.
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP–chip the genome-wide binding sites of 6 insulator-associated proteins—dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF—to obtain the first comprehensive map of insulator elements in Drosophila embryos. We identify over 14,000 putative insulators, including all classically defined insulators. We find two major classes of insulators defined by dCTCF/CP190/BEAF-32 and Su(Hw), respectively. Distributional analyses of insulators revealed that particular sub-classes of insulator elements are excluded between cis-regulatory elements and their target promoters; divide differentially expressed, alternative, and divergent promoters; act as chromatin boundaries; are associated with chromosomal breakpoints among species; and are embedded within active chromatin domains. Together, these results provide a map demarcating the boundaries of gene regulatory units and a framework for understanding insulator function during the development and evolution of Drosophila.  相似文献   

5.
Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila   总被引:2,自引:0,他引:2  
CTCF plays a central role in vertebrate insulators and forms part of the Fab-8 insulator in Drosophila. dCTCF is present at hundreds of sites in the Drosophila genome, where it is located at the boundaries between bands and interbands in polytene chromosomes. dCTCF colocalizes with CP190, which is required for proper binding of dCTCF to chromatin, but not with the other gypsy insulator proteins Su(Hw) or Mod(mdg4)2.2. Mutations in the CP190 gene affect Fab-8 insulator activity, suggesting that CP190 is an essential component of both gypsy and dCTCF insulators. dCTCF is present at specific nuclear locations, forming large insulator bodies that overlap with those formed by Su(Hw), Mod(mdg4)2.2, and CP190. The results suggest that Su(Hw) and dCTCF may be the DNA-binding components of two different subsets of insulators that share CP190 and cooperate in the formation of insulator bodies to regulate the organization of the chromatin fiber in the nucleus.  相似文献   

6.
Fine regulation of complex gene loci in higher eukaryotes is realized through the interaction of promoters with enhancers and repressors, which can be located long distance from the promoter regulated. A question arises, what mechanisms determine proper contacts between the regulatory elements over large distances in the genome. It is suggested that the important role in this process is played by a special class of regulatory elements, insulators, which block the interaction of enhancer and promoter, if they are positioned between them. Furthermore, enhancers do not directly inactivate the activities of enhancer and promoter. Nevertheless, an enhancer, isolated from one of the promoters by an insulator, can activate another, not isolated promoter. The best studied insulator of Drosophila melanogaster was found in the 5′ regulatory region of retrotransposon MDG4. It consists of 12 binding sites for the Su(Hw) protein, which is critical for the activity of this insulator. It was demonstrated that Su(Hw) insulator could protect the gene expression from the negative influence of heterochromatin and from repression, induced by the Polycomb group proteins (Pc proteins). In the present study, it was demonstrated that in transgenic lines, two or three copies of the Su(Hw) insulator could determine the interaction of the miniwhite enhancer and Pc dependant silencer with the miniwhite promoter. Thus, it was first demonstrated that insulators could participate in the regulation of the contacts between promoter and functionally opposite elements, responsible for either gene activation, or repression. Original Russian Text ? M.V. Kostyuchenko, E.E. Savitskaya, M.N. Krivega, P.G. Georgiev, 2008, published in Genetika, 2008, Vol. 44, No. 12, pp. 1693–1697.  相似文献   

7.
Boundary elements have been found in the regulatory region of the Drosophila melanogaster Abdominal-B (Abd-B) gene, which is subdivided into a series of iab domains. The best-studied Fab-7 and Fab-8 boundaries flank the iab-7 enhancer and isolate it from the four promoters regulating Abd-B expression. Recently binding sites for the Drosophila homolog of the vertebrate insulator protein CTCF (dCTCF) were identified in the Fab-8 boundary and upstream of Abd-B promoter A, with no binding of CTCF to the Fab-7 boundary being detected either in vivo or in vitro. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when its binding sites are separated by a 5-kb yellow gene, we have tested the functional interactions between the Fab-7 and Fab-8 boundaries and between these boundaries and the upstream promoter A region containing a dCTCF binding site. It has been found that dCTCF binding sites are essential for pairing between two Fab-8 insulators. However, a strong functional interaction between the Fab-7 and Fab-8 boundaries suggests that additional, as yet unidentified proteins are involved in long-distance interactions between them. We have also shown that Fab-7 and Fab-8 boundaries effectively interact with the upstream region of the Abd-B promoter.  相似文献   

8.
9.
Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization.  相似文献   

10.
11.
12.
Much of the research on insulators in Drosophila has been done with transgenic constructs using the white gene (mini-white) as reporter. Hereby we report that the sequence between the white and CG32795 genes in Drosophila melanogaster contains an insulator of a novel kind. Its functional core is within a 368 bp segment almost contiguous to the white 3′UTR, hence we name it as Wari (white-abutting resident insulator). Though Wari contains no binding sites for known insulator proteins and does not require Su(Hw) or Mod(mdg4) for its activity, it can equally well interact with another copy of Wari and with unrelated Su(Hw)-dependent insulators, gypsy or 1A2. In its natural downstream position, Wari reinforces enhancer blocking by any of the three insulators placed between the enhancer and the promoter; again, Wari–Wari, Wari–gypsy or 1A2–Wari pairing results in mutual neutralization (insulator bypass) when they precede the promoter. The distressing issue is that this element hides in all mini-white constructs employed worldwide to study various insulators and other regulatory elements as well as long-range genomic interactions, and its versatile effects could have seriously influenced the results and conclusions of many works.  相似文献   

13.
14.
15.
Insulators are regulatory DNA elements restricting gene activation by enhancers. Interactions between insulators can lead to both insulation and activation of promoters by enhancers. In this work, we analyzed the effects of interaction of two Drosophila insulators, Wari and Su(Hw). The functional interaction between these insulators was found to enhance the activity of the Su(Hw) insulator only, but not of the Wari insulator. This suggests that the formation of a chromatin loop between interacting insulators is not a key factor for enhancement of insulation, which is in disagreement with the main idea of structural models. In addition, the effect of interaction between Wari and Su(Hw) depends on a distance between them and on the position in the system relative to other regulatory elements.  相似文献   

16.
17.
This study is devoted to clarifying the role of Mod(mdg4)-67.2 and Su(Hw) proteins in the interaction between Su(Hw)-dependent insulator complexes and identifying the specific domains of the Su(Hw) protein required for insulation or mutual neutralization of insulators. Using genetic techniques and experiments in yeast two-hybrid system, we have demonstrated that the zinc finger domain of the Su(Hw) protein is involved in forming a functional insulator complex and cannot be replaced with the DNA-binding domain of the GAL4 protein.  相似文献   

18.
The Su(Hw) insulator found in the gypsy retrotransposon is the most potent enhancer blocker in Drosophila melanogaster. However, two such insulators in tandem do not prevent enhancer-promoter communication, apparently because of their pairing interaction that results in mutual neutralization. Furthering our studies of the role of insulators in the control of gene expression, here we present a functional analysis of a large set of transgenic constructs with various arrangements of regulatory elements, including two or three insulators. We demonstrate that their interplay can have quite different outcomes depending on the order of and distance between elements. Thus, insulators can interact with each other over considerable distances, across interposed enhancers or promoters and coding sequences, whereby enhancer blocking may be attenuated, cancelled, or restored. Some inferences concerning the possible modes of insulator action are made from collating the new data and the relevant literature, with tentative schemes illustrating the regulatory situations in particular model constructs.  相似文献   

19.

Background  

One of the many ascribed functions of CCCTC-binding factor (CTCF) in vertebrates is insulation of genes via enhancer-blocking. Insulation allows genes to be shielded from "cross-talk" with neighboring regulatory elements. As such, endogenous insulator sequences would be valuable elements to enable stable transgene expression. Recently, CTCF joined Su(Hw), Zw5, BEAF32 and GAGA factor as a protein associated with insulator activity in the fruitfly, Drosophila melanogaster. To date, no known insulators have been described in mosquitoes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号