首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bonomi F  Iametti S  Morleo A  Ta D  Vickery LE 《Biochemistry》2011,50(44):9641-9650
The scaffold protein IscU and molecular chaperones HscA and HscB play central roles in biological assembly of iron-sulfur clusters and maturation of iron-sulfur proteins. However, the structure of IscU-FeS complexes and the molecular mechanism whereby the chaperones facilitate cluster transfer to acceptor proteins are not well understood. We have prepared amino acid substitution mutants of Escherichia coli IscU in which potential ligands to the FeS cluster (Cys-37, Cys-63, His-105, and Cys-106) were individually replaced with alanine. The properties of the IscU-FeS complexes formed were investigated by measuring both their ability to transfer preformed FeS clusters to apo-ferredoxin and the activity of the IscU proteins in catalyzing cluster assembly on apo-ferredoxin using inorganic iron with inorganic sulfide or with IscS and cysteine as a sulfur source. The ability of the HscA/HscB chaperone system to accelerate ATP-dependent cluster transfer from each IscU substitution mutant to apo-ferredoxin was also determined. All of the mutants formed FeS complexes with a stoichiometry similar to the wild-type holo-protein, i.e., IscU(2)[2Fe2S], raising the possibility that different cluster ligation states may occur during iron-sulfur protein maturation. Spectroscopic properties of the mutants and the kinetics of transfer of performed IscU-FeS clusters to apo-ferredoxin indicate that the most stable form of holo-IscU involves iron coordination by Cys-63 and Cys-106. Results of studies on the ability of mutants to catalyze formation of holo-ferredoxin using iron and different sulfur sources were consistent with proposed roles for Cys-63 and Cys-106 in FeS cluster binding and also indicated an essential role for Cys-106 in sulfide transfer to IscU from IscS. Measurements of the ability of the chaperones HscA and HscB to facilitate cluster transfer from holo-IscU to apo-ferredoxin showed that only IscU(H105A) behaved similarly to wild-type IscU in exhibiting ATP-dependent stimulation of cluster transfer. IscU(C63A) and IscU(C106A) displayed elevated rates of cluster transfer in the ±ATP whereas IscU(C37A) exhibited low rates of cluster transfer ±ATP. In interpreting these findings, we propose that IscU(2)[2Fe2S] is able undergo structural isomerization to yield conformers having different cysteine residues bound to the cluster. On the basis of the crystal structure of HscA complexed with an IscU-derived peptide, we propose that the chaperone binds and stabilizes an isomer of IscU(2)[2Fe2S] in which the cluster is bound by cysteine residues 37 and 63 and that the [2Fe2S] cluster, being held less tightly than that coordinated by Cys-63 and Cys-106 in free IscU(2)[2Fe2S], is more readily transferred to acceptor proteins such as apo-ferredoxin.  相似文献   

2.
Chandramouli K  Johnson MK 《Biochemistry》2006,45(37):11087-11095
The role of the Azotobacter vinelandii HscA/HscB cochaperone system in ISC-mediated iron-sulfur cluster biogenesis has been investigated in vitro by using CD and EPR spectrometry to monitor the effect of HscA, HscB, MgATP, and MgADP on the time course of cluster transfer from [2Fe-2S]IscU to apo-Isc ferredoxin. CD spectra indicate that both HscB and HscA interact with [2Fe-2S]IscU and the rate of cluster transfer was stimulated more than 20-fold in the presence stoichiometric HscA and HscB and excess MgATP. No stimulation was observed in the absence of either HscB or MgATP, and cluster transfer was found to be an ATP-dependent reaction based on concomitant phosphate production and the enhanced rates of cluster transfer in the presence of KCl which is known to stimulate HscA ATPase activity. The results demonstrate a role of the ISC HscA/HscB cochaperone system in facilitating efficient [2Fe-2S] cluster transfer from the IscU scaffold protein to acceptor proteins and that [2Fe-2S] cluster transfer from IscU is an ATP-dependent process. The data are consistent with the proposed regulation of the HscA ATPase cycle by HscB and IscU [Silberg, J. J., Tapley, T. L., Hoff, K. G., and Vickery, L. E. (2004) J. Biol. Chem. 279, 53924-53931], and mechanistic proposals for coupling of the HscA ATPase cycle with cluster transfer from [2Fe-2S]IscU to apo-IscFdx are discussed.  相似文献   

3.
The Escherichia coli protein IscU serves as the scaffold for Fe-S cluster assembly and the vehicle for Fe-S cluster transfer to acceptor proteins, such as apoferredoxin. IscU populates two conformational states in solution, a structured conformation (S) that resembles the conformation of the holoprotein IscU-[2Fe-2S] and a dynamically disordered conformation (D) that does not bind metal ions. NMR spectroscopic results presented here show that the specialized Hsp70 chaperone (HscA), alone or as the HscA-ADP complex, preferentially binds to and stabilizes the D-state of IscU. IscU is released when HscA binds ATP. By contrast, the J-protein HscB binds preferentially to the S-state of IscU. Consistent with these findings, we propose a mechanism in which cluster transfer is coupled to hydrolysis of ATP bound to HscA, conversion of IscU to the D-state, and release of HscB.  相似文献   

4.
The ATPase activity of HscA, a specialized hsp70 molecular chaperone from Escherichia coli, is regulated by the iron-sulfur cluster assembly protein IscU and the J-type co-chaperone HscB. IscU behaves as a substrate for HscA, and HscB enhances the binding of IscU to HscA. To better understand the mechanism by which HscB and IscU regulate HscA, we examined binding of HscB to the different conformational states of HscA and the effects of HscB and IscU on the kinetics of the individual steps of the HscA ATPase reaction cycle. Affinity sensor studies revealed that whereas IscU binds both ADP (R-state) and ATP (T-state) HscA complexes, HscB interacts only with an ATP-bound state. Studies of ATPase activity under single-turnover and rapid mixing conditions showed that both IscU and HscB interact with the low peptide affinity T-state of HscA (HscA++.ATP) and that both modestly accelerate (3-10-fold) the rate-determining steps in the HscA reaction cycle, k(hyd) and k(T-->R). When present together, IscU and HscB synergistically stimulate both k(hyd) (approximately = 500-fold) and k(T-->R) (approximately = 60-fold), leading to enhanced formation of the HscA.ADP-IscU complex (substrate capture). Following ADP/ATP exchange, IscU also stimulates k(R-->T) (approximately = 50-fold) and thereby accelerates the rate at which the low peptide affinity HscA++.ATP T-state is regenerated. Because HscA nucleotide exchange is fast, the overall rate of the chaperone cycle in vivo will be determined by the availability of the IscU-HscB substrate-co-chaperone complex.  相似文献   

5.
Genetic and biochemical studies have led to the identification of several cellular pathways for the biosynthesis of iron-sulfur proteins in different organisms. The most broadly distributed and highly conserved system involves an Hsp70 chaperone and J-protein co-chaperone system that interacts with a scaffold-like protein involved in [FeS]-cluster preassembly. Specialized forms of Hsp70 and their co-chaperones have evolved in bacteria (HscA, HscB) and in certain fungi (Ssq1, Jac1), whereas most eukaryotes employ a multifunctional mitochondrial Hsp70 (mtHsp70) together with a specialized co-chaperone homologous to HscB/Jac1. HscA and Ssq1 have been shown to specifically bind to a conserved sequence present in the [FeS]-scaffold protein designated IscU in bacteria and Isu in fungi, and the crystal structure of a complex of a peptide containing the IscU recognition region bound to the HscA substrate binding domain has been determined. The interaction of IscU/Isu with HscA/Ssq1 is regulated by HscB/Jac1 which bind the scaffold protein to assist delivery to the chaperone and stabilize the chaperone-scaffold complex by enhancing chaperone ATPase activity. The crystal structure of HscB reveals that the N-terminal J-domain involved in regulation of HscA ATPase activity is similar to other J-proteins, whereas the C-terminal domain is unique and appears to mediate specific interactions with IscU. At the present time the exact function(s) of chaperone-[FeS]-scaffold interactions in iron-sulfur protein biosynthesis remain(s) to be established. In vivo and in vitro studies of yeast Ssq1 and Jac1 indicate that the chaperones are not required for [FeS]-cluster assembly on Isu. Recent in vitro studies using bacterial HscA, HscB and IscU have shown that the chaperones destabilize the IscU[FeS] complex and facilitate cluster delivery to an acceptor apo-protein consistent with a role in regulating cluster release and transfer. Additional genetic and biochemical studies are needed to extend these findings to mtHsp70 activities in higher eukaryotes.  相似文献   

6.
ABSTRACT

Genetic and biochemical studies have led to the identification of several cellular pathways for the biosynthesis of iron-sulfur proteins in different organisms. The most broadly distributed and highly conserved system involves an Hsp70 chaperone and J-protein co-chaperone system that interacts with a scaffold-like protein involved in [FeS]-cluster preassembly. Specialized forms of Hsp70 and their co-chaperones have evolved in bacteria (HscA, HscB) and in certain fungi (Ssq1, Jac1), whereas most eukaryotes employ a multifunctional mitochondrial Hsp70 (mtHsp70) together with a specialized co-chaperone homologous to HscB/Jac1. HscA and Ssq1 have been shown to specifically bind to a conserved sequence present in the [FeS]-scaffold protein designated IscU in bacteria and Isu in fungi, and the crystal structure of a complex of a peptide containing the IscU recognition region bound to the HscA substrate binding domain has been determined. The interaction of IscU/Isu with HscA/Ssq1 is regulated by HscB/Jac1 which bind the scaffold protein to assist delivery to the chaperone and stabilize the chaperone-scaffold complex by enhancing chaperone ATPase activity. The crystal structure of HscB reveals that the N-terminal J-domain involved in regulation of HscA ATPase activity is similar to other J-proteins, whereas the C-terminal domain is unique and appears to mediate specific interactions with IscU. At the present time the exact function(s) of chaperone-[FeS]-scaffold interactions in iron-sulfur protein biosynthesis remain(s) to be established. In vivo and in vitro studies of yeast Ssq1 and Jac1 indicate that the chaperones are not required for [FeS]-cluster assembly on Isu. Recent in vitro studies using bacterial HscA, HscB and IscU have shown that the chaperones destabilize the IscU[FeS] complex and facilitate cluster delivery to an acceptor apo-protein consistent with a role in regulating cluster release and transfer. Additional genetic and biochemical studies are needed to extend these findings to mtHsp70 activities in higher eukaryotes.  相似文献   

7.
The assembly of iron-sulfur (Fe-S) clusters is mediated by complex machinery which, in Escherichia coli, is encoded by the iscRSUA-hscBA-fdx-ORF3 gene cluster. Here, we demonstrate the network of protein-protein interactions among the components involved in the machinery. We have constructed (His)(6)-tagged versions of the components and identified their interacting partners that were co-purified from E. coli extracts with a Ni-affinity column. Direct associations of the defined pair of proteins were further examined in yeast cells using the two-hybrid system. In accord with the previous in vitro binding and kinetic experiments, interactions were observed for the combinations of IscS and IscU, IscU and HscB, IscU and HscA, and HscB and HscA. In addition, we have identified previously unreported interactions between IscS and Fdx, IscS and ORF3, IscA and HscA, and HscA and Fdx. We also found, by site-directed mutational analysis combined with the two-hybrid system, that two cysteine residues in IscU are essential for binding with HscB but not with IscS. Despite the complex network of interactions in various combinations of components, heteromultimeric complexes were not observed in our experiments except for the putative oligomeric form of IscU-IscS-ORF3. Thus, the sequential association and dissociation among the IscS, IscU, IscA, HscB, HscA, Fdx, and ORF3 proteins may be a critical process in the assembly of Fe-S clusters.  相似文献   

8.
HscA, a specialized bacterial hsp70-class chaperone, interacts with the iron-sulfur cluster assembly protein IscU by recognizing a conserved LPPVK sequence motif at positions 99-103. We have used a site-directed fluorescence labeling and quenching strategy to determine whether HscA binds to IscU in a preferred orientation. HscA was selectively labeled on opposite sides of the substrate binding domain with the fluorescent probe bimane, and the ability of LPPVK-containing peptides having tryptophan at the N or C terminus to quench bimane fluorescence was measured. Quenching was highly dependent on the position of tryptophan in the peptide and the location of bimane on HscA implying a strong directional preference for peptide binding. Similar experiments showed that full-length IscU binds in the same orientation as IscU-derived peptides and that binding orientation is unaffected by the co-chaperone HscB. The preferred orientation of the HscA-IscU complex is the reverse of that previously described for peptide complexes of Escherichia coli DnaK and rat Hsc70 substrate binding domain fragments establishing that hsp70 isoforms can bind peptide/polypeptide substrates in different orientations.  相似文献   

9.
IscU/Isu and IscA/Isa (and related NifU and SufA proteins) have been proposed to serve as molecular scaffolds for preassembly of [FeS] clusters to be used in the biogenesis of iron-sulfur proteins. In vitro studies demonstrating transfer of preformed scaffold-[FeS] complexes to apoprotein acceptors have provided experimental support for this hypothesis, but investigations to date have yielded only single-cluster transfer events. We describe an in vitro assay system that allows for real-time monitoring of [FeS] cluster formation using circular dichroism spectroscopy and use this to investigate de novo [FeS] cluster formation and transfer from Escherichia coli IscU and IscA to apo-ferredoxin. Both IscU and IscA were found to be capable of multiple cycles of [2Fe2S] cluster formation and transfer suggesting that these scaffold proteins are capable of acting "catalytically." Kinetic studies further showed that cluster transfer exhibits Michaelis-Menten behavior indicative of complex formation of holo-IscU and holo-IscA with apoferredoxin and consistent with a direct [FeS] cluster transfer mechanism. Analysis of the dependence of the rate of cluster transfer, however, revealed enhanced efficiency at low ratios of scaffold to acceptor protein suggesting participation of a transient, labile scaffold-[FeS] species in the transfer process.  相似文献   

10.
The interaction between IscU and HscB is critical for successful assembly of iron-sulfur clusters. NMR experiments were performed on HscB to investigate which of its residues might be part of the IscU binding surface. Residual dipolar couplings ( (1) D HN and (1) D CalphaHalpha) indicated that the crystal structure of HscB [Cupp-Vickery, J. R., and Vickery, L. E. (2000) Crystal structure of Hsc20, a J-type cochaperone from Escherichia coli, J. Mol. Biol. 304, 835-845] faithfully represents its solution state. NMR relaxation rates ( (15)N R 1, R 2) and (1)H- (15)N heteronuclear NOE values indicated that HscB is rigid along its entire backbone except for three short regions which exhibit flexibility on a fast time scale. Changes in the NMR spectrum of HscB upon addition of IscU mapped to the J-domain/C-domain interface, the interdomain linker, and the C-domain. Sequence conservation is low in the interface and in the linker, and NMR changes observed for these residues likely result from indirect effects of IscU binding. NMR changes observed in the conserved patch of residues in the C-domain (L92, M93, L96, E97, E100, E104, and F153) were suggestive of a direct interaction with IscU. To test this, we replaced several of these residues with alanine and assayed for the ability of HscB to interact with IscU and to stimulate HscA ATPase activity. HscB(L92A,M93A,F153A) and HscB(E97A,E100A,E104A) both showed decreased binding affinity for IscU; the (L92A,M93A,F153A) substitution also strongly perturbed the allosteric interaction within the HscA.IscU.HscB ternary complex. We propose that the conserved patch in the C-domain of HscB is the principal binding site for IscU.  相似文献   

11.
Genetic experiments have established that IscU is involved in maturation of [Fe-S] proteins that require either [2Fe-2S] or [4Fe-4S] clusters for their biological activities. Biochemical studies have also shown that one [2Fe-2S] cluster can be assembled in vitro within each subunit of the IscU homodimer and that these clusters can be reductively coupled to form a single [4Fe-4S] cluster. In the present work, it is shown that the [4Fe-4S] cluster-loaded form of A. vinelandii IscU, but not the [2Fe-2S] cluster-loaded form, can be used for intact cluster transfer to an apo form of A. vinelandii aconitase A, a member of the monomeric dehydratase family of proteins that requires a [4Fe-4S] cluster for enzymatic activity. The rate of [4Fe-4S] cluster transfer from IscU to apo-aconitase A was not affected by the presence of the HscA/HscB co-chaperone system and MgATP. However, an altered form of a [4Fe-4S] cluster-containing IscU, having the highly conserved aspartate-39 residue substituted with alanine, is an effective inhibitor of wild-type [4Fe-4S] cluster-loaded IscU-directed activation of apo-aconitase A. In contrast, neither the clusterless form of IscU nor the [2Fe-2S] cluster-loaded form of IscU is an effective inhibitor of IscU-directed apo-aconitase A activation. These results are interpreted to indicate that the [2Fe-2S] and [4Fe-4S] cluster-loaded forms of IscU adopt different conformations that provide specificity with respect to the maturation of [2Fe-2S] and [4Fe-4S] centers in proteins.  相似文献   

12.
Hsc66 (HscA) and Hsc20 (HscB) from Escherichia coli comprise a specialized chaperone system that selectively binds the iron-sulfur cluster template protein IscU. Hsc66 interacts with peptides corresponding to a discrete region of IscU including residues 99-103 (LPPVK), and a peptide containing residues 98-106 stimulates Hsc66 ATPase activity in a manner similar to IscU. To determine the relative contributions of individual residues in the LPPVK motif to Hsc66 binding and regulation, we have carried out an alanine mutagenesis scan of this motif in the Glu98-Cys106 peptide and the IscU protein. Alanine substitutions in the Glu98-Cys106 peptide resulted in decreased ATPase stimulation (2-10-fold) because of reduced binding affinity, with peptide(P101A) eliciting <10% of the parent peptide stimulation. Alanine substitutions in the IscU protein also revealed lower activities resulting from decreased apparent binding affinity, with the greatest changes in Km observed for the Pro101 (77-fold), Val102 (4-fold), and Lys103 (15-fold) mutants. Calorimetric studies of the binding of IscU mutants to the Hsc66.ADP complex showed that the P101A and K103A mutants also exhibit decreased binding affinity for the ADP-bound state. When ATPase stimulatory activity was assayed in the presence of the co-chaperone Hsc20, each of the mutants displayed enhanced binding affinity, but the P101A and V102A mutants exhibited decreased ability to maximally simulate Hsc66 ATPase. A charge mutant containing the motif sequence of NifU, IscU(V102E), did not bind the ATP or ADP states of Hsc66 but did bind Hsc20 and weakly stimulated Hsc66 ATPase in the presence of the co-chaperone. These results indicate that residues in the LPPVK motif are important for IscU interactions with Hsc66 but not for the ability of Hsc20 to target IscU to Hsc66. The results are discussed in the context of a structural model based on the crystallographic structure of the DnaK peptide-binding domain.  相似文献   

13.
IscU is a key component of the ISC machinery and is involved in the biogenesis of iron-sulfur (Fe-S) proteins. IscU serves as a scaffold for assembly of a nascent Fe-S cluster prior to its delivery to an apo protein. Here, we report the first crystal structure of IscU with a bound [2Fe-2S] cluster from the hyperthermophilic bacterium Aquifex aeolicus, determined at a resolution of 2.3 Å, using multiwavelength anomalous diffraction of the cluster. The holo IscU formed a novel asymmetric trimer that harbored only one [2Fe-2S] cluster. One iron atom of the cluster was coordinated by the Sγ atom of Cys36 and the Nε atom of His106, and the other was coordinated by the Sγ atoms of Cys63 and Cys107 on the surface of just one of the protomers. However, the cluster was buried inside the trimer between the neighboring protomers. The three protomers were conformationally distinct from one another and associated around a noncrystallographic pseudo-3-fold axis. The three flexible loop regions carrying the ligand-binding residues (Cys36, Cys63, His106 and Cys107) and the N-terminal α1 helices were positioned at the interfaces and underwent substantial conformational rearrangement, which stabilized the association of the asymmetric trimer. This unique trimeric A. aeolicus holo-IscU architecture was clearly distinct from other known monomeric apo-IscU/SufU structures, indicating that asymmetric trimer organization, as well as its association/dissociation, would be involved in the scaffolding function of IscU.  相似文献   

14.
Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [Fe2S2] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [Fe2S2] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [Fe2S2] cluster assembly in ferredoxin follows the AUS pathway.  相似文献   

15.
Iron-sulfur proteins play indispensable roles in a broad range of biochemical processes. The biogenesis of iron-sulfur proteins is a complex process that has become a subject of extensive research. The final step of iron-sulfur protein assembly involves transfer of an iron-sulfur cluster from a cluster-donor to a cluster-acceptor protein. This process is facilitated by a specialized chaperone system, which consists of a molecular chaperone from the Hsc70 family and a co-chaperone of the J-domain family. The 3.0 A crystal structure of a human mitochondrial J-type co-chaperone HscB revealed an L-shaped protein that resembles Escherichia coli HscB. The important difference between the two homologs is the presence of an auxiliary metal-binding domain at the N terminus of human HscB that coordinates a metal via the tetracysteine consensus motif CWXCX(9-13)FCXXCXXXQ. The domain is found in HscB homologs from animals and plants as well as in magnetotactic bacteria. The metal-binding site of the domain is structurally similar to that of rubredoxin and several zinc finger proteins containing rubredoxin-like knuckles. The normal mode analysis of HscB revealed that this L-shaped protein preferentially undergoes a scissors-like motion that correlates well with the conformational changes of human HscB observed in the crystals.  相似文献   

16.
Wu SP  Mansy SS  Cowan JA 《Biochemistry》2005,44(11):4284-4293
IscU functions as a scaffold for Fe-S cluster assembly and transfer, and is known to be a substrate protein for molecular chaperones. Kinetic studies of Fe-S cluster transfer from holo IscU to apo Fd in the presence of chaperone DnaK demonstrate an inhibitory effect on the rate of Fe-S cluster transfer from IscU. Binding of DnaK reduces the rate of formation of the IscU-Fd complex (greater than 8-fold), but has little influence on the intrinsic rate of iron-sulfur cluster transfer to apo Fd. Apparently the molecular chaperone DnaK does not facilitate the process of Fe-S cluster transfer from IscU. Rather, DnaK has a modest influence on the stability of the IscU-bound Fe-S cluster that may reflect a more important role in promoting cluster assembly. In accord with prior observations the cochaperone DnaJ stimulates the ATPase activity of DnaK, but has a minimal influence on IscU cluster transfer activity, either alone or in concert with DnaK.  相似文献   

17.
铁硫簇在细胞的生物学过程中起着重要的作用,可参与电子传递、代谢控制和基因调节等过程。研究显示铁硫簇具有多样性,它的合成依赖于ISC和SUF系统,固氮酶中还需要NIF系统的参与。ISC系统由iscSUA-hscBA-fdx基因串编码,合成的是一类“管家”蛋白,适于在正常条件下表达。SUF系统由基因串sufABCDSE编码,常在恶劣环境如氧化应激和铁饥饿条件下表达。NIF系统由nifSU基因编码,适于固氮酶(厌氧条件下起作用)铁硫簇的合成。  相似文献   

18.
The Hsp70-class molecular chaperone HscA interacts specifically with a conserved (99)LPPVK(103) motif of the iron-sulfur cluster scaffold protein IscU. We used a cellulose-bound peptide array to perform single-site saturation substitution of peptide residues corresponding to Glu(98)-Ile(104) of IscU to determine positional amino acid requirements for recognition by HscA. Two mutant chaperone forms, HscA(F426A) with a DnaK-like arch structure and HscA(M433V) with a DnaK-like substrate-binding pocket, were also studied. Wild-type HscA and HscA(F426A) exhibited a strict preference for proline in the central peptide position (ELPPVKI), whereas HscA(M433V) bound a peptide containing a Pro-->Leu substitution at this location (ELPLVKI). Contributions of Phe(426) and Met(433) to HscA peptide specificity were further tested in solution using a fluorescence-based peptide-binding assay. Bimane-labeled HscA and HscA(F426A) bound ELPPVKI peptides with higher affinity than leucine-substituted peptides, whereas HscA(M433V) favored binding of ELPLVKI peptides. Fluorescence-binding studies were also carried out with derivatives of the peptide NRLLLTG, a model substrate for DnaK. HscA and HscA(F426A) bound NRLLLTG peptides weakly, whereas HscA(M433V) bound NRLLLTG peptides with higher affinity than IscU-derived peptides ELPPVKI and ELPLVKI. These results suggest that the specificity of HscA for the LPPVK recognition sequence is determined in part by steric obstruction of the hydrophobic binding pocket by Met(433) and that substitution with the Val(433) sidechain imparts a broader, more DnaK-like, substrate recognition pattern.  相似文献   

19.
Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe–S cluster transfer reactions. UV–vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe–S cluster proteins, thereby supporting a possible physiological role for such centers.  相似文献   

20.
Biological assembly of iron–sulfur (Fe–S) clusters is mediated by complex systems consisting of multiple proteins. Escherichia coli possesses two distinct systems called the ISC and SUF machineries encoded by iscSUA‐hscBA‐fdx‐iscX and sufABCDSE respectively. Deletion of both pathways results in absence of the biosynthetic apparatus for Fe–S clusters, and consequent lethality, which has hampered detailed genetic studies. Here we report that modification of the isoprenoid biosynthetic pathway can offset the indispensability of the Fe–S cluster biosynthetic systems and show that the resulting Δisc Δsuf double mutants can grow without detectable Fe–S cluster‐containing proteins. We also constructed a series of mutants in which each isc gene was disrupted in the deletion background of sufABCDSE. Phenotypic analysis of the mutants revealed that Fdx, an essential electron‐transfer Fe–S protein in the ISC machinery, is dispensable under anaerobic conditions, which is similar to the situation with IscA. Furthermore, we found that several suppressor mutations in IscU, an Fe–S scaffold protein responsible for the de novo Fe–S cluster assembly, could bypass the essential role of the chaperone system HscA and HscB. These findings pave the way toward a detailed molecular analysis to understand the mechanisms involved in Fe–S cluster biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号