首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The immune response to pathogens is regulated by a delicate balance of cytokines. The dysregulation of cytokine gene expression, including interleukin-12, tumor necrosis factor alpha, and gamma interferon (IFN-γ), following human retrovirus infection is well documented. One process by which such gene expression may be modulated is altered DNA methylation. In subsets of T-helper cells, the expression of IFN-γ, a cytokine important to the immune response to viral infection, is regulated in part by DNA methylation such that mRNA expression inversely correlates with the methylation status of the promoter. Of the many possible genes whose methylation status could be affected by viral infection, we examined the IFN-γ gene as a candidate. We show here that acute infection of cells with human immunodeficiency virus type 1 (HIV-1) results in (i) increased DNA methyltransferase expression and activity, (ii) an overall increase in methylation of DNA in infected cells, and (iii) the de novo methylation of a CpG dinucleotide in the IFN-γ gene promoter, resulting in the subsequent downregulation of expression of this cytokine. The introduction of an antisense methyltransferase construct into lymphoid cells resulted in markedly decreased methyltransferase expression, hypomethylation throughout the IFN-γ gene, and increased IFN-γ production, demonstrating a direct link between methyltransferase and IFN-γ gene expression. The ability of increased DNA methyltransferase activity to downregulate the expression of genes like the IFN-γ gene may be one of the mechanisms for dysfunction of T cells in HIV-1-infected individuals.  相似文献   

3.
4.
Li BZ  Huang Z  Cui QY  Song XH  Du L  Jeltsch A  Chen P  Li G  Li E  Xu GL 《Cell research》2011,21(8):1172-1181
Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.  相似文献   

5.
6.
The Epithelial Cell Adhesion Molecule (EpCAM) is overexpressed in many cancers including ovarian cancer and EpCAM overexpression correlates with decreased survival of patients. It was the aim of this study to achieve a targeted methylation of the EpCAM promoter and silence EpCAM gene expression using an engineered zinc finger protein that specifically binds the EpCAM promoter fused to the catalytic domain of the Dnmt3a DNA methyltransferase. We show that transient transfection of this construct increased the methylation of the EpCAM promoter in SKOV3 cells from 4–8% in untreated cells to 30%. Up to 48% methylation was observed in stable cell lines which express the chimeric methyltransferase. Control experiments confirmed that the methylation was dependent on the fusion of the Zinc finger and the methyltransferase domains and specific for the target region. The stable cell lines with methylated EpCAM promoter showed a 60–80% reduction of EpCAM expression as determined at mRNA and protein level and exhibited a significantly reduced cell proliferation. Our data indicate that targeted methylation of the EpCAM promoter could be an approach in the therapy of EpCAM overexpressing cancers.  相似文献   

7.
Efficient and sustained transgene expression are desirable features for many envisioned gene therapy applications, yet synthetic vectors tested to date are rarely successful in achieving these properties. Substantial research efforts have focused on protection of plasmid DNA from nuclease attack as well as increasing nuclear transport of plasmids, resulting in significant but still limited gains. We show here that a further barrier to efficient and sustained expression exists for synthetic vectors: plasmid DNA methylation. We have investigated this barrier for transient expression of a green fluorescent protein (GFP) transgene delivered via Lipofectamine, by testing the effects of culturing C3A human hepatoblastoma cells with 5-Azacytidine (AzaC), an irreversible inhibitor of DNA methyltransferase. To control for loss of plasmids by dilution during mitosis, transfected cells were growth-arrested for 1 week and their subsequent GFP expression quantified by FACS. In the presence of AzaC, a significantly greater fraction of transfected cells remained GFP-positive and possessed higher levels of GFP production relative to AzaC-untreated cells. Additionally, we have applied a Methyl-Assisted PCR (MAP) assay to quantify a subset of methylated CpG sites in the GFP gene. When MAP was performed on plasmids isolated from transfected cells, the extent of methylation was found to be inversely related to the level of GFP expression.  相似文献   

8.
9.
Ectopic expression of DNA methyltransferase 1 (DNMT1) has been proposed to play an important role in cancer. dnmt1 mRNA is undetectable in growth-arrested cells but is induced upon entrance into the S phase of the cell cycle, and until now, the mechanisms responsible for this regulation were unknown. In this report, we demonstrate that the 3'-untranslated region (3'-UTR) of the dnmt1 mRNA can confer a growth-dependent regulation on its own message as well as a heterologous beta-globin mRNA. Our results indicate that a 54-nucleotide highly conserved element within the 3'-UTR is necessary and sufficient to mediate this regulation. Cell-free mRNA decay experiments demonstrate that this element increases mRNA turnover rates and does so to a greater extent in the presence of extracts prepared from arrested cells. A specific RNA-protein complex is formed with the 3'-UTR only in growth-arrested cells, and a UV cross-linking analysis revealed a 40-kDa protein (p40), the binding of which is dramatically increased in growth-arrested cells and is inversely correlated with dnmt1 mRNA levels as cells are induced into the cell cycle. Although ectopic expression of human DNMT1 lacking the 3'-UTR can transform NIH-3T3 cells, inclusion of the 3'-UTR prevents transformation. These results support the hypothesis that deregulated expression of DNMT1 with the cell cycle is important for cellular transformation.  相似文献   

10.
Nonviral episomal vectors present attractive alternative vehicles for gene therapy applications. Previously, we have established a new type of nonviral episomal vector-mediated by the characteristic motifs of matrix attachment regions (MARs), which is driven by the cytomegalovirus (CMV) promoter. However, the CMV promoter is intrinsically susceptible to silencing, resulting in declined productivity during long-term culture. In this study, Chinese hamster ovary (CHO) cells and DNA methyltransferase-deficient (Dnmt3a-deficient) CHO cells were transfected with plasmid-mediated by MAR, or CHO cells were treated with the DNA methylation inhibitor 5-Aza-2′-deoxycytidine. Flow cytometry, plasmid rescue experiments, fluorescence in-situ hybridization (FISH), and bisulfite sequencing were performed to observe transgene expression, its state of existence, and the CpG methylation level of the CMV promoter. The results indicated that all DNA methylation inhibitor and methyltransferase deficient cells could increase transgene expression levels and stability in the presence or absence of selection pressure after a 60-generation culture. Plasmid rescue assay and FISH analysis showed that the vector still existed episomally after long-time culture. Moreover, a relatively lower CMV promoter methylation level was observed in Dnmt3a-deficient cell lines and CHO cells treated with 5-Aza-2′-deoxycytidine. In addition, Dnmt3a-deficient cells were superior to the DNA methylation inhibitor treatment regarding the transgene expression and long-term stability. Our study provides the first evidence that lower DNA methyltransferase can enhance expression level and stability of transgenes mediated by episomal vectors in transfected CHO cells.  相似文献   

11.
12.
13.
为探讨外源NO诱导转基因白桦外源基因表达与基因组DNA甲基化之间的关系,本研究分析了NO供体硝普钠(sodium nitroprusside,SNP)对转基因白桦愈伤组织中外源基因BGT转录的影响,并对此过程中基因组DNA甲基化水平、甲基转移酶基因DRM、MET表达量及生理生化指标进行研究。结果表明:2 mmol·L-1SNP处理后,转基因白桦防御酶活性、丙二醛(MDA)含量显著升高,表明高浓度NO对白桦细胞正常生命活动产生了伤害;甲基转移酶DRM和MET基因上调表达,基因组DNA甲基化水平由10.6%增加到16.5%,外源基因BGT表达量在6 h时显著增加,3 d时仅为对照的0.46倍,说明转基因白桦外源BGT基因的表达对高浓度NO响应明显且受基因组甲基化水平的影响。本研究揭示了转基因白桦外源BGT基因和甲基转移酶MET、DRM基因对高浓度NO的响应模式,分析了基因组甲基化水平及生理生化特征的变化,为转基因植物生长发育的表观遗传调控和外源基因表达影响机制的研究奠定基础。  相似文献   

14.
15.
Human small cell lung cancer (SCLC) is highly aggressive, and quickly develops resistance to therapy. SCLC cells are typically insensitive to glucocorticoids due to impaired glucocorticoid receptor (GR) expression. This is important as we have previously shown that expression of a GR transgene induces cell death in-vitro, and inhibits tumor growth in-vivo. However, the underlying mechanism for loss of GR expression is unknown. The SCLC cell line, DMS79, has low GR expression, compared to non-SCLC cell lines and normal bronchial epithelial cells. Retroviral GR expression in DMS79 cells caused activation of the apoptotic pathway as evidenced by marked induction of caspase-3 activity. Methylation analysis of the GR promoter revealed some methylation in the 1D, and 1E promoters of the GR gene, however the ubiquitous constitutively active 1C promoter was heavily methylated. In the 1C promoter there was a highly significant increase in DNA methylation in a panel of 14 human SCLC cell lines compared to a mixed panel of GR expressing, and non-expressing cell lines, and to peripheral blood mononuclear cells. Furthermore, within the panel of SCLC cell lines there was a significant negative correlation seen between methylation of the 1C promoter, and GR protein expression. Reversal of GR gene methylation with DNA methyltransferase inhibition caused increased GR mRNA and protein expression in SCLC but not non-SCLC cells. This resulted in increased Gc sensitivity, decreased Bcl-2 expression and increased caspase-3 activity in SCLC cells. These data suggest that DNA methylation decreases GR gene expression in human SCLC cells, in a similar manner to that for conventional tumor suppressor genes.  相似文献   

16.
DNA methylation is a major determinant of epigenetic inheritance and plays an important role in genome stability. The accurate propagation of DNA methylation patterns with cell division requires that methylation be closely coupled to DNA replication, however the precise molecular determinants of this interaction have not been defined. In the present study, we show that the predominant DNA methyltransferase species in somatic cells, DNMT1, is a component of a multiprotein DNA replication complex termed the DNA synthesome that fully supports semi-conservative DNA replication in a cell-free system. DNMT1 protein and activity were found to co-purify with the human DNA synthesome through a series of subcellular fractionation and chromatography steps, resulting in an enrichment of methyltransferase specific activity from two human cell lines. DNA methyltransferase activity co-eluted with in vitro replication activity and DNA polymerase a activity on sucrose density gradients suggesting that DNMT1 is a tightly bound, core component of the replication complex. The synthesome-associated pool of DNA methyltransferase exhibited both maintenance and de novo methyltransferase activity and the ratio of the two was similar to that observed in whole cell lysates and for recombinant DNMT1. These data indicate that interactions within the synthesome complex do not influence the intrinsic preference of DNMT1 for hemimethylated DNA, but suggest that newly replicated DNA may be subject to low level de novo methylation. The data indicate that DNA methylation is tightly coupled to replication through physical interaction of DNMT1 and core components of the replication machinery. The definition of the molecular interactions between DNMT1 and other proteins in the replication complex in normal and neoplastic cells will provide further insight into the regulation of DNA methylation and the mechanisms underlying the alteration of DNA methylation patterns during carcinogenesis.  相似文献   

17.
DNA methylation is a major determinant of epigenetic inheritance and plays an important role in genome stability. The accurate propagation of DNA methylation patterns with cell division requires that methylation be closely coupled to DNA replication, however the precise molecular determinants of this interaction have not been defined. In the present study, we show that the predominant DNA methyltransferase species in somatic cells, DNMT1, is a component of a multiprotein DNA replication complex termed the DNA synthesome that fully supports semi-conservative DNA replication in a cell-free system. DNMT1 protein and activity were found to co-purify with the human DNA synthesome through a series of subcellular fractionation and chromatography steps, resulting in an enrichment of methyltransferase specific activity from two human cell lines. DNA methyltransferase activity co-eluted with in vitro replication activity and DNA polymerase alpha activity on sucrose density gradients suggesting that DNMT1 is a tightly bound, core component of the replication complex. The synthesome-associated pool of DNA methyltransferase exhibited both maintenance and de novo methyltransferase activity and the ratio of the two was similar to that observed in whole cell lysates and for recombinant DNMT1. These data indicate that interactions within the synthesome complex do not influence the intrinsic preference of DNMT1 for hemimethylated DNA, but suggest that newly replicated DNA may be subject to low level de novo methylation. The data indicate that DNA methylation is tightly coupled to replication through physical interaction of DNMT1 and core components of the replication machinery. The definition of the molecular interactions between DNMT1 and other proteins in the replication complex in normal and neoplastic cells will provide further insight into the regulation of DNA methylation and the mechanisms underlying the alteration of DNA methylation patterns during carcinogenesis.  相似文献   

18.
Methylation of cytosine residues in DNA plays a critical role in the silencing of gene expression, organization of chromatin structure, and cellular differentiation of eukaryotes. Previous studies failed to detect 5-methylcytosine in Dictyostelium genomic DNA, but the recent sequencing of the Dictyostelium genome revealed a candidate DNA methyltransferase gene (dnmA). The genome sequence also uncovered an unusual distribution of potential methylation sites, CpG islands, throughout the genome. DnmA belongs to the Dnmt2 subfamily and contains all the catalytic motifs necessary for cytosine methyltransferases. Dnmt2 activity is typically weak in Drosophila melanogaster, mouse, and human cells and the gene function in these systems is unknown. We have investigated the methylation status of Dictyostelium genomic DNA with antibodies raised against 5-methylcytosine and detected low levels of the modified nucleotide. We also found that DNA methylation increased during development. We searched the genome for potential methylation sites and found them in retrotransposable elements and in several other genes. Using Southern blot analysis with methylation-sensitive and -insensitive restriction endonucleases, we found that the DIRS retrotransposon and the guaB gene were indeed methylated. We then mutated the dnmA gene and found that DNA methylation was reduced to about 50% of the wild-type level. The mutant cells exhibited morphological defects in late development, indicating that DNA methylation has a regulatory role in Dictyostelium development. Our findings establish a role for a Dnmt2 methyltransferase in eukaryotic development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号