首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
AtHMA4 is an Arabidopsis thaliana P1B-ATPase which transports Zn and Cd. Here, we demonstrate that AtHMA4 is localized at the plasma membrane and expressed in tissues surrounding the root vascular vessels. The ectopic overexpression of AtHMA4 improved the root growth in the presence of toxic concentrations of Zn, Cd and Co. A null mutant exhibited a lower translocation of Zn and Cd from the roots to shoot. In contrast, the AtHMA4 overexpressing lines displayed an increase in the zinc and cadmium shoot content. Altogether, these results strongly indicate that AtHMA4 plays a role in metal loading in the xylem.  相似文献   

2.
Nickel is an essential micronutrient due to its involvement in many enzymatic reactions as a cofactor. However, excess of this element is toxic to biological systems. Here, we constructed a cDNA library from Beta maritima and screened it in the yeast system to identify genes that confer resistance to toxic levels of nickel. A cDNA clone (NIC6), which encodes for a putative membrane protein with unknown function, was found to help yeast cells to tolerate toxic levels of nickel. A GFP fused form of Nic6 protein was localized to multivesicular structures in tobacco epidermal cells. Thus, our results suggest a possible role of Nic6 in nickel and intracellular ion homeostasis.  相似文献   

3.
The maintenance of ion homeostasis in plant cells is a fundamental physiological requirement for sustainable plant growth, development and production. Plants exposed to high concentrations of heavy metals must respond in order to avoid the deleterious effects of heavy metal toxicity at the structural, physiological and molecular levels. Plant strategies for coping with heavy metal toxicity are genotype-specific and, at least to some extent, modulated by environmental conditions. There is considerable interest in the mechanisms underpinning plant metal tolerance, a complex process that enables plants to survive metal ion stress and adapt to maintain growth and development without exhibiting symptoms of toxicity. This review briefly summarizes some recent cell biological, molecular and proteomic findings concerning the responses of plant roots to heavy metal ions in the rhizosphere, metal ion-induced reactions at the cell wall-plasma membrane interface, and various aspects of heavy metal ion uptake and transport in plants via membrane transporters. The molecular and genetic approaches that are discussed are analyzed in the context of their potential practical applications in biotechnological approaches for engineering increased heavy metal tolerance in crops and other useful plants.  相似文献   

4.
Modulation of the antigen transport machinery TAP by friends and enemies   总被引:3,自引:0,他引:3  
Abele R  Tampé R 《FEBS letters》2006,580(4):1156-1163
  相似文献   

5.
Seeds contain the embryo as a new plant in miniature and have two major functions, reproduction and dispersal. Seed formation completes the process of plant reproduction and, with seed germination, the next plant generation starts. Given the ever-increasing environmental pollution with metal(loid)s, it is perhaps surprising that relatively few reports detail the impacts of metals on seed metabolism, viability and germination in comparison to the numerous publications on the effects of metals in vegetative tissues, particularly roots and shoots. This review provides information on metal(loid) homeostasis, detoxification and tolerance in relation to seed metabolism and performance. The delivery of metals from the mother plant into seeds and their implications on seed development are discussed, as are their uptake upon seed imbibition and subsequent effects on seed germination. Implications for seeds and seedlings on the biochemical and molecular level are discussed and finally, applied aspects are considered regarding the use of seeds for soil and water purification, and in phytoremediation programmes. We conclude with a perspective on future metal research in relation to seed biology.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号