首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low rates of spontaneous G:C-->C:G transversions would be achieved not only by the correction of base mismatches during DNA replication but also by the prevention and removal of oxidative base damage in DNA. Escherichia coli must have several pathways to repair such mismatches and DNA modifications. In this study, we attempted to identify mutator loci leading to G:C-->C:G transversions in E.coli. The strain CC103 carrying a specific mutation in lacZ was mutagenized by random miniTn 10 insertion mutagenesis. In this strain, only the G:C-->C:G change can revert the glutamic acid at codon 461, which is essential for sufficient beta-galactosidase activity to allow growth on lactose. Mutator strains were detected as colonies with significantly increased rates of papillae formation on glucose minimal plates containing P-Gal and X-Gal. We screened approximately 40 000 colonies and selected several mutator strains. The strain GC39 showed the highest mutation rate to Lac+. The gene responsible for the mutator phenotypes, mut39 , was mapped at around 67 min on the E.coli chromosome. The sequencing of the miniTn 10 -flanking DNA region revealed that the mut39 was identical to the mutY gene of E.coli. The plasmid carrying the mutY + gene reduced spontaneous G:C-->T:A and G:C-->C:G mutations in both mutY and mut39 strains. Purified MutY protein bound to the oligonucleotides containing 7,8-dihydro-8-oxo-guanine (8-oxoG):G and 8-oxoG:A. Furthermore, we found that the MutY protein had a DNA glycosylase activity which removes unmodified guanine from the 8-oxoG:G mispair. These results demonstrate that the MutY protein prevents the generation of G:C-->C:G transversions by removing guanine from the 8-oxoG:G mispair in E.coli.  相似文献   

2.
BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature.  相似文献   

3.
4.
DNA-binding proteins from starved cells (Dps proteins) protect bacteria primarily from oxidative damage. They are composed of 12 identical subunits assembled with 23-symmetry to form a compact cage-like structure known to be stable at temperatures > 70 degrees C and over a wide pH range. Thermosynechococcus elongatus Dps thermostability is increased dramatically relative to mesophilic Dps proteins. Hydrophobic interactions at the dimeric and trimeric interfaces called Dps-like are replaced by salt bridges and hydrogen bonds, a common strategy in thermophiles. Moreover, the buried surface area at the least-extended Dps-like interface is significantly increased. A peculiarity of T. elongatus Dps is the presence of a chloride ion coordinated with threefold symmetry-related arginine residues lining the opening of the Dps-like pore toward the internal cavity. T. elongatus Dps conserves the unusual intersubunit ferroxidase centre that allows the Dps protein family to oxidize Fe(II) with hydrogen peroxide, thereby inhibiting free radical production via Fenton chemistry. This catalytic property is of special importance in T. elongatus (which lacks the catalase gene) in the protection of DNA and photosystems I and II from hydrogen peroxide-mediated oxidative damage.  相似文献   

5.
Dps (DNA-binding proteins from starved cells) proteins belong to a widespread bacterial family of proteins expressed under nutritional and oxidative stress conditions. In particular, Dps proteins protect DNA against Fenton-mediated oxidative stress, as they catalyze iron oxidation by hydrogen peroxide at highly conserved ferroxidase centers and thus reduce significantly hydroxyl radical production. This work investigates the possible generation of intraprotein radicals during the ferroxidation reaction by Escherichia coli and Listeria innocua Dps, two representative members of the family. Stopped-flow analyses show that the conserved tryptophan and tyrosine residues located near the metal binding/oxidation center are in a radical form after iron oxidation by hydrogen peroxide. DNA protection assays indicate that the presence of both residues is necessary to limit release of hydroxyl radicals in solution and the consequent oxidative damage to DNA. In general terms, the demonstration that conserved protein residues act as a trap that dissipates free electrons generated during the oxidative process brings out a novel role for the Dps protein cage.  相似文献   

6.
Hemochromatosis, the inherited disorder of iron metabolism, leads, if untreated, to progressive iron overload and premature death. The hemochromatosis gene, HFE, recently has been identified, and characterization of this gene has shown that it contains two mutations that result in amino acid substitutions-cDNA nucleotides 845 G-->A (C282Y) and 187 C-->G (H63D). Although hemochromatosis is common in Caucasians, affecting >=1/300 individuals of northern European origin, it has not been recognized in other populations. The present study used PCR and restriction-enzyme digestion to analyze the frequency of the 845 G-->A and 187 C-->G mutations in HLA-typed samples from non-Caucasian populations, comprising Australian Aboriginal, Chinese, and Pacific Islanders. Results showed that the 845 G-->A mutation was present in these populations (allele frequency 0.32%), and, furthermore, it was always seen in conjunction with HLA haplotypes common in Caucasians, suggesting that 845 G-->A may have been introduced into these populations by Caucasian admixture. 187 C-->G was present at an allele frequency of 2.68% in the two populations analyzed (Australian Aboriginal and Chinese). In the Australian Aboriginal samples, 187 C-->G was found to be associated with HLA haplotypes common in Caucasians, suggesting that it was introduced by recent admixture. In the Chinese samples analyzed, 187 C-->G was present in association with a wide variety of HLA haplotypes, showing this mutation to be widespread and likely to predate the more genetically restricted 845 G-->A mutation.  相似文献   

7.
Glyoxal is a major product of DNA oxidation in which Fenton-type oxygen free radical-forming systems are involved. To determine the mutation spectrum of glyoxal in mammalian cells and to compare the spectrum with those observed in other experimental systems, we analyzed mutations in a bacterial suppressor tRNA gene (supF) in the shuttle vector plasmid pMY189. We treated pMY189 with glyoxal and immediately transfected it into simian COS-7 cells. The cytotoxicity and mutation frequency increased according to the dose of glyoxal. The majority of glyoxal-induced mutations (48%) were single-base substitutions. Eighty three percent of the single-base substitutions occurred at G:C base pairs. Among them, G:C-->T:A transversions were predominant, followed by G:C-->C:G transversions and G:C-->A:T transitions. A:T-->T:A transversions were also observed. Mutational hotspots within the supF gene were detected. These results suggest that glyoxal may play an important role in mutagenesis induced by oxygen free radicals.  相似文献   

8.
The DNA in dormant spores of Bacillus species is saturated with a group of nonspecific DNA-binding proteins, termed alpha/beta-type small, acid-soluble spore proteins (SASP). These proteins alter DNA structure in vivo and in vitro, providing spore resistance to UV light. In addition, heat treatments (e.g., 85 degrees C for 30 min) which give little killing of wild-type spores of B. subtilis kill > 99% of spores which lack most alpha/beta-type SASP (termed alpha - beta - spores). Similar large differences in survival of wild-type and alpha - beta - spores were found at 90, 80, 65, 22, and 10 degrees C. After heat treatment (85 degrees C for 30 min) or prolonged storage (22 degrees C for 6 months) that gave > 99% killing of alpha - beta - spores, 10 to 20% of the survivors contained auxotrophic or asporogenous mutations. However, alpha - beta - spores heated for 30 min at 85 degrees C released no more dipicolinic acid than similarly heated wild-type spores (< 20% of the total dipicolinic acid) and triggered germination normally. In contrast, after a heat treatment (93 degrees C for 30 min) that gave > or = 99% killing of wild-type spores, < 1% of the survivors had acquired new obvious mutations, > 85% of the spore's dipicolinic acid had been released, and < 1% of the surviving spores could initiate spore germination. Analysis of DNA extracted from heated (85 degrees C, 30 min) and unheated wild-type spores and unheated alpha - beta - spores revealed very few single-strand breaks (< 1 per 20 kb) in the DNA. In contrast, the DNA from heated alpha- beta- spores had more than 10 single-strand breaks per 20 kb. These data suggest that binding of alpha/beta-type SASP to spore DNA in vivo greatly reduces DNA damage caused by heating, increasing spore heat resistance and long-term survival. While the precise nature of the initial DNA damage after heating of alpha- beta- spores that results in the single-strand breaks is not clear, a likely possibility is DNA depurination. A role for alpha/beta-type SASP in protecting DNA against depurination (and thus promoting spore survival) was further suggested by the demonstration that these proteins reduce the rate of DNA depurination in vitro at least 20-fold.  相似文献   

9.
Virtually all mutations causing Hunter syndrome (mucopolysaccharidosis type II) are expected to be new mutations. Therefore, as a means of molecular diagnosis, we developed a rapid method to sequence the entire iduronate-2-sulfatase (IDS) coding region. PCR amplicons representing the IDS cDNA were sequenced with an automatic instrument, and output was analyzed by computer-assisted interpretation of tracings, using Staden programs on a Sun computer. Mutations were found in 10 of 11 patients studied. Unique missense mutations were identified in five patients: H229Y (685C-->T, severe phenotype); P358R (1073C-->G, severe); R468W (1402C-->T, mild); P469H (1406C-->A, mild); and Y523C (1568A-->G, mild). Non-sense mutations were identified in two patients: R172X (514C-->T, severe) and Q389X (1165C-->T, severe). Two other patients with severe disease had insertions of 1 and 14 bp, in exons 3 and 6, respectively. In another patient with severe disease, the predominant (> 95%) IDS message resulted from aberrant splicing, which skipped exon 3. In this last case, consensus sequences for splice sites in exon 3 were intact, but a 395 C-->G mutation was identified 24 bp upstream from the 3' splice site of exon 3. This mutation created a cryptic 5' splice site with a better consensus sequence for 5' splice sites than the natural 5' splice site of intron 3. A minor population of the IDS message was processed by using this cryptic splice site; however, no correctly spliced message was detected in leukocytes from this patient. The mutational topology of the IDS gene is presented.  相似文献   

10.
Recently, we showed that homozygosity for the common 677(C-->T) mutation in the methylenetetrahydrofolate reductase (MTHFR) gene, causing thermolability of the enzyme, is a risk factor for neural-tube defects (NTDs). We now report on another mutation in the same gene, the 1298(A-->C) mutation, which changes a glutamate into an alanine residue. This mutation destroys an MboII recognition site and has an allele frequency of .33. This 1298(A-->C) mutation results in decreased MTHFR activity (one-way analysis of variance [ANOVA] P < .0001), which is more pronounced in the homozygous than heterozygous state. Neither the homozygous nor the heterozygous state is associated with higher plasma homocysteine (Hcy) or a lower plasma folate concentration-phenomena that are evident with homozygosity for the 677(C-->T) mutation. However, there appears to be an interaction between these two common mutations. When compared with heterozygosity for either the 677(C-->T) or 1298(A-->C) mutations, the combined heterozygosity for the 1298(A-->C) and 677(C-->T) mutations was associated with reduced MTHFR specific activity (ANOVA P < .0001), higher Hcy, and decreased plasma folate levels (ANOVA P <.03). Thus, combined heterozygosity for both MTHFR mutations results in similar features as observed in homozygotes for the 677(C-->T) mutation. This combined heterozygosity was observed in 28% (n =86) of the NTD patients compared with 20% (n =403) among controls, resulting in an odds ratio of 2.04 (95% confidence interval: .9-4.7). These data suggest that the combined heterozygosity for the two MTHFR common mutations accounts for a proportion of folate-related NTDs, which is not explained by homozygosity for the 677(C-->T) mutation, and can be an additional genetic risk factor for NTDs.  相似文献   

11.
Carcinogenic Cr(VI) compounds were previously found to induce amino acid/glutathione-Cr(III)-DNA crosslinks with the site of adduction on the phosphate backbone. Utilizing the pSP189 shuttle vector plasmid we found that these ternary DNA adducts were mutagenic in human fibroblasts. The Cr(III)-glutathione adduct was the most potent in this assay, followed by Cr(III)-His and Cr(III)-Cys adducts. Binary Cr(III)-DNA complexes were only weakly mutagenic, inducing a significant response only at a 10 times higher number of adducts compared with Cr(III)-glutathione. Single base substitutions at the G:C base pairs were the predominant type of mutations for all Cr(III) adducts. Cr(III), Cr(III)-Cys and Cr(III)-His adducts induced G:C-->A:T transitions and G:C-->T:A transversions with almost equal frequency, whereas the Cr(III)-glutathione mutational spectrum was dominated by G:C-->T:A transversions. Adduct-induced mutations were targeted toward G:C base pairs with either A or G in the 3' position to the mutated G, while spontaneous mutations occurred mostly at G:C base pairs with a 3' A. No correlation was found between the sites of DNA adduction and positions of base substitution, as adducts were formed randomly on DNA with no base specificity. The observed mutagenicity of Cr(III)-induced phosphotriesters demonstrates the importance of a Cr(III)-dependent pathway in Cr(VI) carcinogenicity.  相似文献   

12.
Oxidative damage of DNA is a source of mutation in living cells. Although all organisms have evolved mechanisms of defense against oxidative damage, little is known about these mechanisms in nonenteric bacteria, including pseudomonads. Here we have studied the involvement of oxidized guanine (GO) repair enzymes and DNA-protecting enzyme Dps in the avoidance of mutations in starving Pseudomonas putida. Additionally, we examined possible connections between the oxidative damage of DNA and involvement of the error-prone DNA polymerase (Pol)V homologue RulAB in stationary-phase mutagenesis in P. putida. Our results demonstrated that the GO repair enzymes MutY, MutM, and MutT are involved in the prevention of base substitution mutations in carbon-starved P. putida. Interestingly, the antimutator effect of MutT was dependent on the growth phase of bacteria. Although the lack of MutT caused a strong mutator phenotype under carbon starvation conditions for bacteria, only a twofold increased effect on the frequency of mutations was observed for growing bacteria. This indicates that MutT has a backup system which efficiently complements the absence of this enzyme in actively growing cells. The knockout of MutM affected only the spectrum of mutations but did not change mutation frequency. Dps is known to protect DNA from oxidative damage. We found that dps-defective P. putida cells were more sensitive to sudden exposure to hydrogen peroxide than wild-type cells. At the same time, the absence of Dps did not affect the accumulation of mutations in populations of starved bacteria. Thus, it is possible that the protective role of Dps becomes essential for genome integrity only when bacteria are exposed to exogenous agents that lead to oxidative DNA damage but not under physiological conditions. Introduction of the Y family DNA polymerase PolV homologue rulAB into P. putida increased the proportion of A-to-C and A-to-G base substitutions among mutations, which occurred under starvation conditions. Since PolV is known to perform translesion synthesis past damaged bases in DNA (e.g., some oxidized forms of adenine), our results may imply that adenine oxidation products are also an important source of mutation in starving bacteria.  相似文献   

13.
Previous work has shown that lethal heat treatment of Bacillus subtilis spores lacking the major DNA-binding proteins SASP-alpha and -beta (alpha-beta- spores) causes significant DNA damage, including many single-strand breaks. In this work we have used a reagent specific for aldehydes present in abasic sites in DNA to show that DNA from wild-type spores killed by heat treatment to levels of < 0.05% survival had at most two aldehydes (i.e., abasic sites) per 10(4) nucleotides, while DNA from alpha(-)beta- spores killed to similar levels had 7 to 20 times as many abasic sites per 10(4) nucleotides. These data were generally consistent with the level of single-strand breaks in DNA from these heated spores and strongly suggest that a major mechanism responsible for the heat killing of alpha(-)beta- (but not wild-type) spores is DNA depurination followed by strand breakage at the resultant abasic site. In contrast, hydrogen peroxide killing of alpha(-)beta - spores was not accompanied by generation of a high level of DNA aldehydes.  相似文献   

14.
We have identified eight independent transversions at CpG in 290 consecutive families with hemophilia B. These eight transversions account for 16.3% of all independent transversions in our sample, yet the expected frequency of CpG transversions at random in the factor IX gene is only 2.6% (P < .01). The aggregate data suggest that the two types of CpG transversions (G:C-->T:A and G:C-->C:G) possess similar mutation rates (24.8 x 10(-10) and 20.6 x 10(-10), respectively), which are about fivefold greater than the comparable rates for transversions at non-CpG dinucleotides. The enhancement of transversions at CpG suggests that the model by which mutations occur at CpG may need to be reevaluated. The relationship, if any, between deamination of 5-methyl cytosine and enhancement of transversions at CpG remains to be defined.  相似文献   

15.
Telomere shortening triggers replicative senescence in human fibroblasts. The inability of DNA polymerases to replicate a linear DNA molecule completely (the end replication problem) is one cause of telomere shortening. Other possible causes are the formation of single-stranded overhangs at the end of telomeres and the preferential vulnerability of telomeres to oxidative stress. To elucidate the relative importance of these possibilities, amount and distribution of telomeric single-strand breaks, length of the G-rich overhang, and telomere shortening rate in human MRC-5 fibroblasts were measured. Treatment of nonproliferating cells with hydrogen peroxide increases the sensitivity to S1 nuclease in telomeres preferentially and accelerates their shortening by a corresponding amount as soon as the cells proliferate. A reduction of the activity of intracellular peroxides using the spin trap alpha-phenyl-t-butyl-nitrone reduces the telomere shortening rate and increases the replicative life span. The length of the telomeric single-stranded overhang is independent of DNA damaging stresses, but single-strand breaks accumulate randomly all along the telomere after alkylation. The telomere shortening rate and the rate of replicative aging can be either accelerated or decelerated by a modification of the amount of oxidative stress. Quantitatively, stress-mediated telomere damage contributes most to telomere shortening under standard conditions.  相似文献   

16.
We have evaluated the feasibility of using PCR-based mutation screening for non-Jewish enzyme-defined carriers identified through Tay-Sachs disease-prevention programs. Although Tay-Sachs mutations are rare in the general population, non-Jewish individuals may be screened as spouses of Jewish carriers or as relatives of probands. In order to define a panel of alleles that might account for the majority of mutations in non-Jewish carriers, we investigated 26 independent alleles from 20 obligate carriers and 3 affected individuals. Eighteen alleles were represented by 12 previously identified mutations, 7 that were newly identified, and 1 that remains unidentified. We then investigated 46 enzyme-defined carrier alleles: 19 were pseudodeficiency alleles, and five mutations accounted for 15 other alleles. An eighth new mutation was detected among enzyme-defined carriers. Eleven alleles remain unidentified, despite the testing for 23 alleles. Some may represent false positives for the enzyme test. Our results indicate that predominant mutations, other than the two pseudodeficiency alleles (739C-->T and 745C-->T) and one disease allele (IVS9+1G-->A), do not occur in the general population. This suggests that it is not possible to define a collection of mutations that could identify an overwhelming majority of the alleles in non-Jews who may require Tay-Sachs carrier screening. We conclude that determination of carrier status by DNA analysis alone is inefficient because of the large proportion of rare alleles. Notwithstanding the possibility of false positives inherent to enzyme screening, this method remains an essential component of carrier screening in non-Jews. DNA screening can be best used as an adjunct to enzyme testing to exclude known HEXA pseudodeficiency alleles, the IVS9+1G-->A disease allele, and other mutations relevant to the subject's genetic heritage.  相似文献   

17.
Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.  相似文献   

18.
Hydrogen peroxide-induced DNA damage in bovine lens epithelial cells   总被引:3,自引:0,他引:3  
The present investigation was undertaken to determine the types and extent of DNA damage resulting from incubation of primary cultures of bovine lens epithelial cells with hydrogen peroxide. Significant numbers of DNA single-strand breaks were detected by alkaline elution after exposure to as little as 25 microM H2O2 for 5 min at 37 degrees C. The extent of single-strand breakage was concentration dependent and linear from 25 to 200 microM H2O2. The observed single-strand breaks appear primarily due to the action of the hydroxyl radical via a Fenton reaction as both an iron chelator, 1,10-phenanthroline and OH. scavengers, including DMSO, KI and glycerol, significantly inhibited the DNA-damaging effect of H2O2. Diethyldithiocarbamate, an inhibitor of superoxide dismutase, further potentiated the DNA-damaging effects of H2O2, presumably by increasing the steady-state concentration of Fe2+. DNA-protein cross-linking was not observed. In addition, significant levels of 5,6-saturated thymine residues or pyrimidine dimers were not detected after modification of the alkaline elution methodology to allow the use of either E. coli endonuclease III or bacteriophage T4 endonuclease V, respectively. No double-strand breaks were detected after incubation of epithelial cell cultures with H2O2 concentrations of up to 400 microM for 10 min and subsequent neutral filter elution. Since, in vivo, the lens epithelium contains populations of both quiescent and dividing cells, the degree of susceptibility to oxidative damage was also studied in actively growing and plateau-phase cultures. Reduced levels of single-strand breakage were observed when plateau-phase cultures were compared to actively growing cells. In contrast, essentially no differences in repair rates were noted at equitoxic doses of H2O2. The above results suggest that lens epithelial cells may be particularly sensitive to oxidative damage and thus are a good model system in which to study the effects of oxidative stress.  相似文献   

19.
Canavan disease: mutations among Jewish and non-jewish patients.   总被引:9,自引:4,他引:5  
Canavan disease is an autosomal recessive leukodystrophy caused by the deficiency of aspartoacylase (ASPA). Sixty-four probands were analyzed for mutations in the ASPA gene. Three point mutations--693C-->A, 854A-->C, and 914C-->A--were identified in the coding sequence. The 693C-->A and 914C-->A base changes, resulting in nonsense tyr231-->ter and missense ala305-->glu mutations, respectively, lead to complete loss of ASPA activity in in vitro expression studies. The 854A-->C transversion converted glu to ala in codon 285. The glu285-->ala mutant ASPA has 2.5% of the activity expressed by the wild-type enzyme. A fourth mutation, 433 --2(A-->G) transition, was identified at the splice-acceptor site in intron 2. The splice-site mutation would lead to skipping of exon 3, accompanied by a frameshift, and thus would produce aberrant ASPA. Of the 128 unrelated Canavan chromosomes analyzed, 88 were from probands of Ashkenazi Jewish descent. The glu285-->ala mutation was predominant (82.9%) in this population, followed by the tyr231-->ter (14.8%) and 433 --2(A-->G) (1.1%) mutations. The three mutations account for 98.8% of the Canavan chromosomes of Ashkenazi Jewish origin. The ala305-->glu mutation was found exclusively in non-Jewish probands of European descent and constituted 60% of the 40 mutant chromosomes. Predominant occurrence of certain mutations among Ashkenazi Jewish and non-Jewish patients with Canavan disease would suggest a founding-father effect in propagation of these mutant chromosomes.  相似文献   

20.
Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN + HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN + HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号