首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
Summary Plants of five tomato strains were grown under low-K stress at three Na levels. These plants were harvested at three time intervals, and Na accumulation and distribution were measured in their tissues. Strain differences were observed for the ability to substitute Na for K under low-K stress. In two strains with high Na-substitution capacity, efficiency in substitution was associated with the accumulation of more Na and the maintenance of higher Na concentrations in shoot tissues than in other strains. In a third strain which also had a relatively high Na-substitution capacity at the highest solution Na level, an unusual efficiency in Na substitution was indicated, because the strain neither accumulated Na nor maintained high tissue Na levels.  相似文献   

2.
Summary Sesbania showed a luxuriant growth in soil with an electrical conductivity of up to 10 m Scm−1. Under saline conditions Na and Cl accumulated at different rates in the plants. Accumulation of these ions in the leaf rachis compared with leaflets appears to be an adaptive feature of this legume. Maintenance of an optimum K level and accumulation of Ca are also indicative of a salt-tolerance mechanism. Accumulation of Fe in the roots of salt-stressed plants is noteworthy. Organic acids and soluble sugars which accumulated in plants under stress condition may play a role in osmotic adjustment. The level of proline, however, remained unaltered. Though the chlorophyll content of the leaves decreased, the photosynthetic rate was found to be enhanced by saline conditions. The probable relationships between these changes and the salt tolerance mechanism in the plant have been discussed.  相似文献   

3.
Summary Effect of sodium chloride and sodium sulphate salinities on growth and mineral nutrition of peanut (A. hypogea L.) variety TMV-10 has been studied. Both salts suppressed growth of the plants. The inorganic analysis revealed that NaCl and Na2SO4 caused accumulation of Na, P, Fe and Mn in root, stem, leaf and gynophore. NaCl treatment caused accumulation of Cl in these parts. The uptake of K was hampered by both salts whereas Ca uptake was retarded mainly by Na2SO4. The results are discussed in relation to the salt tolerance capacity of the plant.  相似文献   

4.
A greenhouse experiment was carried out to determine whether the decline of Arnica montana L. in heathland vegetation in the Netherlands could be caused by a detrimental effect of soil acidification on vesicular-arbuscular mycorrhiza of this species. Arnica montana and two non-declining species from the same habitat, Hieracium pilosella L. and Deschampsia flexuosa (L.) Trin., were grown with and without the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxter sensu Gerdemann) Gerd. and Trappe in pots with an extremely nutrient-poor, sandy soil. They were percolated weekly with nutrient solution with different pH values, viz. 5.5, 4.5, 3.5 and 2.5. At intervals of three weeks and up to 12 weeks, measurements were made on growth, nutrient uptake and VAM infection.In the most acid treatments growth and nutrient uptake were reduced in all species. VAM infection decreased only slightly with decreasing pH of the treatments. Without VAM, Arnica montana died and Hieracium pilosella hardly grew at the most acid treatments. Therefore it is concluded that VAM decreased the stress caused by the most acid treatments. Leachate from the most acid treatment had a pH of approximately 4, and contained considerable amounts of aluminium, dissolved from the solid phase of the soil. This might have played a role in the detrimental effects on the plants in the case of the most acid treatment. No evidence was found in this experiment that the decline of Arnica montana was due to detrimental effects of soil acidification on VAM of this species.  相似文献   

5.
The essential oil of Satureja montana L. had a broad-spectrum of antimicrobial activity against 46 species of yeasts. This high and diffused activity could be used to control potential pathogenic and spoilage yeasts. The assay of MIC toward some pathogenic and spoilage yeasts showed a range values from 0.10 to 0.25 l ml–1. The MIC and growth rate reduction assay were effective tests for quantitative evaluation of antimicrobial activity.  相似文献   

6.
The forest under-storey herbs Anemone nemorosa, Lamiastrum galeobdolon and Veronica montana are generally considered indicator species of old, broadleaved woodland sites where the soil fertility is often low. In a glasshouse bioassay, however, all three species not only showed large positive growth responses to supplied P concentrations (0–10mgL –1) solutions, but also tolerated high P concentrations (20–40mgL –1), well above those normally found in their natural habitat. Plants responded by raising the concentrations of P in their shoot and root tissues and increasing their biomass, resulting in an increased P uptake. A shade-tolerant competitor species, Urtica dioica, also grew vigorously across the full range of P concentrations, restricting the growth of the woodland species. This emphasises the difficulty of establishing semi-natural woodland vegetation in the presence of competitor species, for example in situations where new woodlands are planted on fertile ex-agricultural soils containing large residual concentrations of P. The influence of soil pH on the growth and nutrient relations of A. nemorosa, L. galeobdolon, V. montana, Poa trivialisandU. dioicawas determined in a separate experiment using an ex-arable soil as the growing medium with pH levels adjusted from 7.4 to 5.8 and 4.3 respectively. Acidifying the soil enhanced growth, but reduced the concentrations of N, P and K in the leaves of all three woodland species, probably due to dilution of these minerals in the increased dry matter production. The competitor species (P. trivialis and U. dioica) responded in similar manner to the woodland indicator species. These results suggest that manipulating soil pH as a means of facilitating the establishment of woodland indicator species in new farm woods is unlikely, in the short term, to be effective where competitor species are present.  相似文献   

7.
Maize (Zea mays L. cv. Alize) plants were grown in a calcareous soil in pots divided by 30-m nylon nets into three compartments, the central one for root growth and the outer ones for hyphal growth. Sterle soil was inoculated with either (1) rhizosphere microorganisms other than vesicular-arbuscular mycorrhizal (VAM) fungi, (2) rhizosphere microorganisms together with a VAM fungus [Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappel], or (3) with a gamma-irradiated inoculum as control. Plants were grown under controlled-climate conditions and harvested after 3 or 6 weeks. VAM plants had higher shootroot ratios than non-VAM plants. After 6 weeks, the concentrations of P, Zn and Cu in roots and shoots had significantly increased with VAM colonization, whereas Mn concentrations had significantly decreased. Root exudates were collected on agar sheets placed on the interface between root and hyphal compartments. Six-week-old VAM and non-VAM plants had similar root exudate compositions of 72–73% reducing sugars, 17–18% phenolics, 7% organic acids and 3% amino acids. In another experiment in which root exudates were collected on agar sheets with or without antibiotics, the amounts of amino acids and carbohydrates recovered were similar in VAM and non-VAM plants. However, threeto sixfold higher amounts of carbohydrates, amino acids and phenolics were recovered when antibiotics were added to the agar sheets. Thus, the high microbial activity in the rhizosphere and on the rhizoplane limits the exudates recovered from roots.  相似文献   

8.
Misra  Aparna  Tyler  Germund 《Plant and Soil》2000,224(2):297-303
Shoot uptake of mineral nutrients (Ca, Cu, Fe, K, mg, Mn, P, S, Zn) by Agrostis stolonifera L. was compared with Festuca ovina L. under wet and dry cycles. Such conditions are typical for A. stolonifera sites, whereas F. ovina is growing mostly on consistently drier and better-drained soils. Plants were grown in a glasshouse, at controlled temperature and light conditions, using two moisture regimes, one constant at 60% WHC (water holding capacity), one wet/dry fluctuating between 35 and 100% WHC. Above ground and total biomass production was lower under wet/dry treatment than at constant water regime in F. ovina, but did not differ between regimes in A. stolonifera. Shoot uptake of most elements was severely reduced in F. ovina at the wet/dry regime. Shoot uptake and concentrations of most elements studied (Cu, K, Mn, P, S, Zn) were lower (p<0.05) under wet/dry treatment than at constant regime in A. stolonifera and tended to be lower also of Fe and Mg. Differences in biomass production observed are consistent with field evidence that A. stolonifera grows in sites which are periodically flooded but may become quite dry during other periods, and that F. ovina is limited to sites which are consistently drier and better drained. Evidence from the present study, however, does not support any view that alternating wet and dry cycles, as typical of A. stolonifera field sites, would be beneficial to nutrient acquisition of this species but that biomass production may develop normally at the lower uptake of most mineral nutrients measured under the wet/dry regime. Such regimes are decidedly unfavourable to both growth and nutrient acquisition of F. ovina.  相似文献   

9.
We tested the prediction that the successional replacement of plant species during succession on inland sand dunes results from the effects of an increase in nitrogen mineralization on competitive interactions. The growth and competitive strength of Festuca ovina and Deschampsia flexuosa on soil substrates with different amounts of soil organic matter or nitrogen supply were measured. Small tillers of Festuca ovina and Deschampsia flexuosa were grown in monocultures and 1:1-mixtures on soil columns with undisturbed layers of soil organic matter from different successional age. There was (a) no visible soil organic matter, (b) a thin soil organic layer (0.5 cm) and (c) a thicker soil organic layer (6.0 cm) present on the soil columns. The species were also grown on columns with no visible soil organic matter (bare sand) with two different levels of N fertilization to mimic the increased N mineralization in the older successional stages.In monoculture, Festuca produced more biomass on the substrates with a soil organic layer compared to the unfertilized sand substrate. It also produced more biomass on sand substrates with N fertilization. Deschampsia produced more biomass in treatments with a soil organic layer compared to the bare sand treatments, but did not respond to the ammonium-nitrate addition. In competition, Festuca seemed to be the stronger competitor on the unfertilized sand substrate. Festuca was also the better competitor on the N fertilized sand treatments, while on the treatments with a soil organic layer Deschampsia was the winning species. Our results do not support the hypothesis that an increase in N supply is responsible for the replacement of Festuca by Deschampsia that concur with the accumulation of soil organic matter during succession in inland dunes.  相似文献   

10.
Y. B. Ho 《Hydrobiologia》1979,63(1):33-43
Growth, chlorophyll and mineral nutrients studies were made in Phalaris arundinaceae L. in three Scottish lochs of varying nutrient status from March to November in 1975. The maximum shoot height and shoot dry weight attained by the plants were approximately 160 cm and 4 g respectively. Seasonal changes in the chlorophyll levels in the Phalaris leaf were studied and two peaks were found, one in April and the other in June–July. Maximum chlorophyll level attained was 9 mg g–1 leaf dry weight. The changes in the mineral levels in the root, stem, leaf and inflorescence parts of the plants from the three lochs were also assayed throughout the growing season. A total of eight mineral elements were studied, including carbon, nitrogen, phosphorus, potassium, sodium, calcium, magnesium and iron. Variations in both the mineral concentrations and their pattern of changes during the study period among the plants from the lochs were observed and discussed.  相似文献   

11.
Forest die-back and impaired tree vitality have frequently been ascribed to Al-toxicity and Al-induced nutritional disorders due to increased acidification of forest soils. Therefore, in this experiment effects of Al were studied on growth and nutrient uptake with seedlings of five different forest tree species. During growth in culture solutions with and without Al all five species proved to be very Al-tolerant, despite high accumulation of Al in roots. In the coniferous evergreens Douglas-fir and Scots pine shoot as well as root Al concentrations were significantly higher than in the deciduous broad-leaved species oak and birch. Larch showed intermediate Al levels. In none of the five species did Al reduce nutrient concentrations or the Ca/Al ratio to values below the critical level. Besides differences in Al accumulation, coniferous and broad-leaved species also differed with respect to uptake and assimilation of nitrogen. Due to extra NH 4 + uptake, oak and birch showed a much higher N uptake and higher NH 4 + preference than the coniferous species. Especially with oak this high NH 4 + preference in combination with a low specific root surface area resulted in a high root proton efflux density. In comparison to both broad-leaved trees and Scots pine the NO 3 reduction capacity of larch and Douglas-fir was extremely low. This may have important consequences for both species if grown in NO 3 -rich soils.  相似文献   

12.
The poor growth of young Eucalyptus regnans seedlings in undried soil from the mature forest of E. regnans can be overcome by previously air-drying the soil or by adding sufficient amounts of complete soluble fertilizer or equivalent concentrations of P (as NaH2PO4) and N (as NaNO3). A factorial pot experiment in which phosphate and nitrate were added to undried soil indicated that P was the primary deficiency for young seedlings and that response to N did not occur until this lack was satisfied. In dried soil, seedlings also responded to additions of complete fertilizer but most of this effect was due to N rather than P. Field trials in the mature forest also indicated greater growth in dried soil than undried soil and confirmed a response of young seedlings to superphosphate. In pot experiments, the concentration of P and N per g plant dry weight after four months was relatively constant irrespective of the final size of the plant. Seedlings in dried soil extracted up to 15 times more P than did those grown in undried soil. In general, chemical analysis of soil indicated more extractable P and N from dried soil although this was not always consistently so. Soil desiccation resulted in an increase in soil surface area due to the fragmentation of larger peds and to an increase in the number of microfractures which remained in the soil crumbs after rewetting. Mycorrhiza are likely to be important since the differentiation of the growth response of seedlings in dried and undried soil, which occurred at 5–6 weeks, corresponded with the establishment of full ectomycorrhizal development (80% root tips). The factors concerned with the increase in fertility after air-drying are discussed.Abbreviations GR Growth Ratio  相似文献   

13.
Kerley  S. J.  Leach  J. E.  Swain  J. L.  Huyghe  C. 《Plant and Soil》2000,222(1-2):241-253
In calcareous soils, genotypes of Lupinus albus L. generally grow poorly, resulting in stunted plants that often develop lime-induced chlorosis. In contrast, some genotypes of L. pilosus Murr. occur naturally in calcareous soils without developing any visible symptoms of stress. Some genotypic variation for tolerance to calcareous soil does exist in L. albus and the tolerance mechanisms need to be determined. The adaptation through root system morphological plasticity of L. albus and L. pilosus, to heterogeneous limed soil profiles (pH 7.8) containing either patches of acid (non-limed) soil, or vertically split between acid and limed soil, was investigated. When grown in the presence of patches of acid soil, L. albus had a 52% greater shoot dry weight and visibly greener leaves compared with plants grown in the homogeneous limed soil. Total root dry matter in the acid-soil patches was greater than in the control limed-soil patches. This was due to a four-fold increase in the cluster root mass, accounting for 95% of the root dry matter in the acid-soil patch. Although these cluster roots secreted no more citric acid per unit mass than those in the limed soil did, their greater mass resulted in a higher citrate concentration in the surrounding soil. L. pilosus responded to the patches of acid soil in a manner comparable with L. albus. When grown in the homogeneous limed soil, L. pilosus had a greater maximum net CO2 assimilation rate (Pmax) than L. albus, however, the Pmax of both species increased after they had accessed a patch of acid soil. Differences were apparent between the L. albus genotypes grown in soil profiles split vertically into limed and acid soil. A genotype by soil interaction occurred in the partitioning between soils of the cluster roots. The genotype La 674 was comparable with L. pilosus and produced over 11% of its cluster roots in the limed soil, whereas the other genotypes produced only 1–3% of their cluster roots in the limed soil. These results indicate L. pilosus is better adapted to the limed soil than L. albus, but that both species respond to a heterogeneous soil by producing mainly cluster roots in an acid-soil patch. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
One-year-old Prunus avium L. were grown under greenhouse conditions in a Countesswells soil in all combinations of 2 pH and 2 P levels. The soil, obtained from a long-term liming and fertilizer experiment, provided pH values throughout the experiment of 3.75–3.99 (pH 1) and 4.81–5.41 (pH 2). The P treatments had 0.43% acetic acid extractable P of 31–44 g g-1 (P1) and 145–173 g g-1 (P2). The trees were harvested 92 (H1), 134 (H2), and 168 (H3) days after initiation of growth.Top (leaf+new stem) dry weight was significantly increased for pH 2 and P2 at H2 and H3. P2 also increased leaf weight (H1), the weight of the original stem-root (H2 and H3), and root length but decreased root diameter at both soil pHs (H2 and H3). Total tree uptake of N, P, K, Ca, and Mg was also increased by pH-P combinations which had significantly greater dry matter production and root length. Total Mn uptake decreased at pH2. Root nutrient inflows (uM m-1 day-1) were increased for Ca at pH2 and for P at P2. Mn inflow decreased at pH2 and at pH1 P2 although the increased root length associated with the latter treatmen resulted in increased total tree Mn uptake. In general, high nutrient inflows occurred in all trees at H1 and in severely stunted trees at pH1 P1; both had larger than average root diameters.  相似文献   

15.
Nutrient imbalances of declining sugar maple (Acer saccharum Marsh.) stands in southeastern Quebec have been associated with high exchangeable Mg levels in soils relative to soil K and Ca. A greenhouse experiment was set up to test the hypothesis that the equilibrium between soil exchangeable K, Ca, and Mg ions influences the growth and nutrient status of sugar maple seedlings. Also tested was whether endomycorrhization can alter nutrient acquisition under various soil exchangeable basic cations ratios. Treatments consisted of seven ratios of soil exchangeable K, Ca, and Mg making up a total base saturation of 58%, and a soil inoculation treatment with the endomycorrhizal fungus Glomus versiforme (control and inoculated), in a complete factorial design. Sugar maple seedlings were grown for 3 months in the treated soils. Plant shoot elongation rate, dry biomass and nutrient concentrations in foliage were influenced by the various ratios of soil cations. The predicted plant biomass and foliar K concentration were highest at a soil Ca saturation of 38%, a soil K saturation of 12%, and a soil Mg saturation of 8%. Potassium concentration in foliage was dependent on the level of Ca and Mg saturation in the soil when soil K saturation was close to 12%. Foliar Ca and Mg levels were more dependent on their corresponding levels in soil than foliar K. Colonization by G. versiforme did not influence seedling growth and macronutrient uptake. The results confirm that growth and nutrition of sugar maple are negatively affected by imbalances in exchangeable basic cations in soils.  相似文献   

16.
Growth rates and tissue nutrient concentrations were measured in tomato (Lycopersicon esculentum Mill) grown in unheated high tunnels in the spring in the northeast USA. Two weeks after transplant on 3 April, seedlings had low concentrations of Nitrogen, Magnesium and other nutrients, while later plantings on 17 April and 1 May had adequate nutrition. The low yield and small fruit of the 3 April planting, compared to the later plantings, was likely related to this nutrient stress soon after transplant. Air and soil temperatures were less than 10°C at planting on 3 April. Air and soil were warmed during the day to different extents in tunnels vented at different temperatures. Over all plantings and ventilation regimes, relative growth rates over the two weeks after transplant were correlated to average air temperature. However, there was little uptake of P, N and Mg, when soil was cooler than 12°C. Nutrient concentrations in the shoot became very low because shoot growth continued when soil temperature limited nutrient uptake.  相似文献   

17.
Summary Effects of root temperature on the growth and morphology of roots were measured in oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.). Plants were grown in flowing solution culture and acclimatized over several weeks to a root temperature of 5°C prior to treatment at a range of root temperatures between 3 and 25°C, with common shoot temperature. Root temperature affected root extension, mean radius, root surface area, numbers and lengths of root hairs. Total root length of rape plants increased with temperature over the range 3–9°C, but was constant at higher temperatures. Root length of barley increased with temperature in the range 3–25°C, by a factor of 27 after 20 days. Root radii had a lognormal distribution and their means decreased with increasing temperature from 0.14 mm at 3°C to 0.08 mm at 25°C. The density of root hairs on the root surface increased by a factor of 4 in rape between 3 and 25°C, but in barley the highest density was at 9°C. The contribution of root hairs to total root surface area was relatively greater in rape than in barley. The changes in root system morphology may be interpreted as adaptive responses to temperature stress on nutrient uptake, providing greater surface area for absorption per unit root weight or length.  相似文献   

18.
Hatimi  Abdelhakim 《Plant and Soil》1999,216(1-2):93-101
The behaviour of Acacia cyanophylla Lind. plants submitted to salinity stress was followed in the greenhouse. The plants were associated with indigenous symbiotic microorganisms isolated from the coastal dunes of the Souss-Massa region. A two months period of salinity had a large negative impact on plant growth and acquisition of macro nutrients. However, the study underlined the role of the microbial inoculum for the plant in the achievement of salt tolerance. An isolate of Bradyrhizobium sp., RCM6 (R1), originating from the Massa dunes, was highly efficient in improving growth and nutrition of the A. cyanophylla. Double inoculation with the rhizobia and an endomycorrhizal complex, isolated from the Lamzar dunes had a clear additional positive effect, i.e. the fungi further increased the tolerance of the A. cyanophylla plants to salinity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
We investigated the effect of host (Plodia interpunctella; Lepidoptera: Pyralidae) nutritional status on development of the solitary endoparasitoid,Venturia canescens (Hymenoptera: Ichneumonidae). Parasitoids from 3rd (L3) instars reared on a deficient diet during early parasitism took longer to develop and suffered higher mortality than those reared from hosts fedad libitum although there was not a significant difference in the size of eclosing wasps from the two groups. L5 hosts reared at high density produced smaller parasitoids, which developed more rapidly than those reared from hosts from low density containers, although mortality was higher in the latter. In a separate experiment we starved groups of 10–20 hosts (parasitized as L3) daily beginning on the 4th day after parasitism, to determine the host developmental stage required for successful parasitoid development to eclosion. Parasitoid survivorship increased with length of host access to food, while the egg-to-adult parasitoid development time increased throughout the experiment. Parasitoid size decreased with increasing periods of host starvation. The successful emergence ofVenturia depends uponPlodia reaching the size normally attained in the mid-5th instar, or 50–70% of the mass of healthy late 5th instars. Our results show that when earlier instars are parasitized, host growth is essential for successful parasitoid development to eclosion. Furthermore, they suggest that, for many koinobionts, host suitability may be greatly influenced by feeding rate and food quality.  相似文献   

20.
The effect of an artificially induced drought was investigated in an 80-year-old sugar maple (Acer saccharum Marsh.) stand in southern Quebec. We hypothesized that leaf peroxidase activity would increase, and that leaf nutrient deficiencies typical of declining trees (K, Mg) would develop during the year following the imposition of the drought. An impermeable tarpaulin was placed on the ground at the base of the trees during the summer of 1991. Foliage and soils were sampled periodically during the summers of 1991 and 1992. The treated trees showed decreased leaf water potential and increased peroxidase activity over most of the 1991 growing season. Diameter growth was significantly reduced in 1992. Soil NO 3 - and K+ were elevated while Mn2+ was reduced under the tarpaulin treatment at various times during the 1991 growing season. Soil NO 3 - , NH 4 + , K+ and Mg2+ were elevated in the treated plots at various times during the 1992 growing season even though there was a lack of effect on foliar nutrient concentrations over the same period. Drought conditions may have reduced water and nutrient uptake without significantly affecting leaf nutrient status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号